{"title":"正则齐次可追踪非哈密顿图的构造","authors":"Xining Liu, Pu Qiao","doi":"10.1016/j.dam.2025.08.052","DOIUrl":null,"url":null,"abstract":"<div><div>A graph is called homogeneously traceable if every vertex is an endpoint of a Hamilton path. In 1979 Chartrand, Gould and Kapoor proved that for every integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>9</mn><mo>,</mo></mrow></math></span> there exists a homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. The graphs they constructed are irregular. Thus it is natural to consider the existence problem of regular homogeneously traceable nonhamiltonian graphs. In 2022 Hu and Zhan proved that for every even integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>, there exists a cubic homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>, and for every integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>18</mn></mrow></math></span>, there exists a 4-regular homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. They also posed the problem: Given an integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, determine the integers <span><math><mi>n</mi></math></span> such that there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. We prove two results: (1) For every odd integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>, integer <span><math><mrow><mi>p</mi><mo>≥</mo><mn>6</mn></mrow></math></span> and integer <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>}</mo></mrow></mrow></math></span>, there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>q</mi></mrow></math></span>; (2) for every even integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, integer <span><math><mrow><mi>p</mi><mo>≥</mo><mn>6</mn></mrow></math></span> and integer <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>}</mo></mrow></mrow></math></span>, there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>q</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 500-508"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of regular homogeneously traceable nonhamiltonian graphs\",\"authors\":\"Xining Liu, Pu Qiao\",\"doi\":\"10.1016/j.dam.2025.08.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A graph is called homogeneously traceable if every vertex is an endpoint of a Hamilton path. In 1979 Chartrand, Gould and Kapoor proved that for every integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>9</mn><mo>,</mo></mrow></math></span> there exists a homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. The graphs they constructed are irregular. Thus it is natural to consider the existence problem of regular homogeneously traceable nonhamiltonian graphs. In 2022 Hu and Zhan proved that for every even integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>, there exists a cubic homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>, and for every integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>18</mn></mrow></math></span>, there exists a 4-regular homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. They also posed the problem: Given an integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, determine the integers <span><math><mi>n</mi></math></span> such that there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. We prove two results: (1) For every odd integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>, integer <span><math><mrow><mi>p</mi><mo>≥</mo><mn>6</mn></mrow></math></span> and integer <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>}</mo></mrow></mrow></math></span>, there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>q</mi></mrow></math></span>; (2) for every even integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, integer <span><math><mrow><mi>p</mi><mo>≥</mo><mn>6</mn></mrow></math></span> and integer <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>}</mo></mrow></mrow></math></span>, there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>q</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 500-508\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004998\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004998","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Construction of regular homogeneously traceable nonhamiltonian graphs
A graph is called homogeneously traceable if every vertex is an endpoint of a Hamilton path. In 1979 Chartrand, Gould and Kapoor proved that for every integer there exists a homogeneously traceable nonhamiltonian graph of order . The graphs they constructed are irregular. Thus it is natural to consider the existence problem of regular homogeneously traceable nonhamiltonian graphs. In 2022 Hu and Zhan proved that for every even integer , there exists a cubic homogeneously traceable nonhamiltonian graph of order , and for every integer , there exists a 4-regular homogeneously traceable nonhamiltonian graph of order . They also posed the problem: Given an integer , determine the integers such that there exists a -regular homogeneously traceable nonhamiltonian graph of order . We prove two results: (1) For every odd integer , integer and integer , there exists a -regular homogeneously traceable nonhamiltonian graph of order ; (2) for every even integer , integer and integer , there exists a -regular homogeneously traceable nonhamiltonian graph of order .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.