Li Liu , Fengxia Liu , Yun Li , Hong-Jian Lai , Hua Cai
{"title":"Upper bound of the list r-hued chromatic number","authors":"Li Liu , Fengxia Liu , Yun Li , Hong-Jian Lai , Hua Cai","doi":"10.1016/j.dam.2025.09.021","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>k</mi></math></span>, <span><math><mi>r</mi></math></span> be positive integers. For a color list <span><math><mi>L</mi></math></span> on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, if <span><math><mrow><mrow><mo>|</mo><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> for any <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>L</mi></math></span> is a <span><math><mi>k</mi></math></span>-list of <span><math><mi>G</mi></math></span>. Given a list <span><math><mi>L</mi></math></span> of <span><math><mi>G</mi></math></span>, an <span><math><mrow><mo>(</mo><mi>L</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span>-coloring of <span><math><mi>G</mi></math></span> is a proper vertex coloring <span><math><mi>c</mi></math></span> such that <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> and any vertex is adjacent to vertices with at least min<span><math><mrow><mo>{</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> different colors. The list <span><math><mi>r</mi></math></span>-hued chromatic number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>L</mi><mo>,</mo><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest integer <span><math><mi>k</mi></math></span> such that for any <span><math><mi>k</mi></math></span>-list <span><math><mi>L</mi></math></span> of <span><math><mi>G</mi></math></span>, <span><math><mi>G</mi></math></span> has an <span><math><mrow><mo>(</mo><mi>L</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span>-coloring. In this paper, we prove that if <span><math><mi>G</mi></math></span> is a connected graph, then <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>L</mi><mo>,</mo><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>min</mo><mrow><mo>{</mo><mi>r</mi><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, where the equality holds if and only if <span><math><mrow><mi>r</mi><mo>≥</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>G</mi></math></span> is a Moore graph with diameter 2.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 187-197"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005487","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let , be positive integers. For a color list on , if for any , then is a -list of . Given a list of , an -coloring of is a proper vertex coloring such that and any vertex is adjacent to vertices with at least min different colors. The list -hued chromatic number of , denoted by , is the smallest integer such that for any -list of , has an -coloring. In this paper, we prove that if is a connected graph, then , where the equality holds if and only if and is a Moore graph with diameter 2.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.