Bjoern Andres , Jannik Irmai , Lucas Fabian Naumann
{"title":"团分割多面体的弦环面","authors":"Bjoern Andres , Jannik Irmai , Lucas Fabian Naumann","doi":"10.1016/j.dam.2025.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>The <span><math><mi>q</mi></math></span>-chorded <span><math><mi>k</mi></math></span>-cycle inequalities are a class of valid inequalities for the clique partitioning polytope. It is known that for <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></mrow></mrow></math></span>, these inequalities induce facets of the clique partitioning polytope if and only if <span><math><mi>k</mi></math></span> is odd. Here, we characterize such facets for arbitrary <span><math><mi>k</mi></math></span> and <span><math><mi>q</mi></math></span>. More specifically, we prove that the <span><math><mi>q</mi></math></span>-chorded <span><math><mi>k</mi></math></span>-cycle inequalities induce facets of the clique partitioning polytope if and only if two conditions are satisfied: <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span> mod <span><math><mi>q</mi></math></span>, and if <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow></math></span> then <span><math><mrow><mi>q</mi><mo>=</mo><mn>3</mn></mrow></math></span> or <span><math><mi>q</mi></math></span> is even. This establishes the existence of many facets induced by <span><math><mi>q</mi></math></span>-chorded <span><math><mi>k</mi></math></span>-cycle inequalities beyond those previously known.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 662-670"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chorded cycle facets of the clique partitioning polytope\",\"authors\":\"Bjoern Andres , Jannik Irmai , Lucas Fabian Naumann\",\"doi\":\"10.1016/j.dam.2025.09.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <span><math><mi>q</mi></math></span>-chorded <span><math><mi>k</mi></math></span>-cycle inequalities are a class of valid inequalities for the clique partitioning polytope. It is known that for <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></mrow></mrow></math></span>, these inequalities induce facets of the clique partitioning polytope if and only if <span><math><mi>k</mi></math></span> is odd. Here, we characterize such facets for arbitrary <span><math><mi>k</mi></math></span> and <span><math><mi>q</mi></math></span>. More specifically, we prove that the <span><math><mi>q</mi></math></span>-chorded <span><math><mi>k</mi></math></span>-cycle inequalities induce facets of the clique partitioning polytope if and only if two conditions are satisfied: <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span> mod <span><math><mi>q</mi></math></span>, and if <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow></math></span> then <span><math><mrow><mi>q</mi><mo>=</mo><mn>3</mn></mrow></math></span> or <span><math><mi>q</mi></math></span> is even. This establishes the existence of many facets induced by <span><math><mi>q</mi></math></span>-chorded <span><math><mi>k</mi></math></span>-cycle inequalities beyond those previously known.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 662-670\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25005475\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005475","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
q弦k环不等式是团划分多面体的一类有效不等式。已知对于q∈{2,k−12},当且仅当k为奇数时,这些不等式推导出团划分多面体的面。在这里,我们刻画了任意k和q的这类面。更具体地说,我们证明了q弦k环不等式当且仅当两个条件满足时,即k=1 mod q,当k=3q+1则q=3或q为偶,我们推导出团划分多面体的面。这建立了由q弦k环不等式所引起的许多面的存在,超出了先前已知的那些面。
Chorded cycle facets of the clique partitioning polytope
The -chorded -cycle inequalities are a class of valid inequalities for the clique partitioning polytope. It is known that for , these inequalities induce facets of the clique partitioning polytope if and only if is odd. Here, we characterize such facets for arbitrary and . More specifically, we prove that the -chorded -cycle inequalities induce facets of the clique partitioning polytope if and only if two conditions are satisfied: mod , and if then or is even. This establishes the existence of many facets induced by -chorded -cycle inequalities beyond those previously known.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.