路径幂的近自同构

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Shoushuang Chen, Shikun Ou
{"title":"路径幂的近自同构","authors":"Shoushuang Chen,&nbsp;Shikun Ou","doi":"10.1016/j.dam.2025.09.015","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a connected graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mi>f</mi></math></span> a permutation on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Define <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>d</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>−</mo><mi>d</mi><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mo>∑</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, where the sum is taken over all unordered pairs <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></math></span> of distinct vertices of <span><math><mi>G</mi></math></span>. Denote by <span><math><mrow><mi>π</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the smallest positive value of <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> among all permutations on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. A permutation <span><math><mi>f</mi></math></span> on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called a <em>near automorphism</em> of <span><math><mi>G</mi></math></span> if <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>π</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The <span><math><mi>k</mi></math></span>th power of <span><math><mi>G</mi></math></span>, written as <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>, also has <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> as vertex set, but <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> are adjacent in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> whenever <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> in <span><math><mi>G</mi></math></span>. The near automorphisms of the path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and its square <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> were described in Aitken (1999) and Wong et al. (2023), respectively. In this paper, we give the value of <span><math><mrow><mi>π</mi><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, and determine the near automorphisms of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> when <span><math><mrow><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 482-499"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near automorphisms of powers of a path\",\"authors\":\"Shoushuang Chen,&nbsp;Shikun Ou\",\"doi\":\"10.1016/j.dam.2025.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a connected graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mi>f</mi></math></span> a permutation on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Define <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>d</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>−</mo><mi>d</mi><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mo>∑</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, where the sum is taken over all unordered pairs <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></math></span> of distinct vertices of <span><math><mi>G</mi></math></span>. Denote by <span><math><mrow><mi>π</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the smallest positive value of <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> among all permutations on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. A permutation <span><math><mi>f</mi></math></span> on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called a <em>near automorphism</em> of <span><math><mi>G</mi></math></span> if <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>π</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The <span><math><mi>k</mi></math></span>th power of <span><math><mi>G</mi></math></span>, written as <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>, also has <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> as vertex set, but <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> are adjacent in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> whenever <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> in <span><math><mi>G</mi></math></span>. The near automorphisms of the path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and its square <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> were described in Aitken (1999) and Wong et al. (2023), respectively. In this paper, we give the value of <span><math><mrow><mi>π</mi><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, and determine the near automorphisms of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> when <span><math><mrow><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 482-499\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25005414\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005414","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设G是顶点集V(G)的连通图,f是V(G)上的一个置换。定义δf(x,y)=|d(x,y)−d(f(x),f(y))|和δf(G)=∑δf(x,y),其中对G上不同顶点的所有无序对x,y求和,用π(G)表示V(G)上所有排列中δf(G)的最小正值。如果δf(G)=π(G),则f在V(G)上的排列称为G的近自同构。G的k次幂,写为Gk,也有V(G)作为顶点集,但是当G中的d(x,y)≤k时,x和y在Gk中相邻。路径Pn及其平方Pn2的近自同态分别在Aitken(1999)和Wong et al.(2023)中描述。本文给出了π(Pnk)的值,并确定了Pnk在3≤k≤n−2时的近自同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near automorphisms of powers of a path
Let G be a connected graph with vertex set V(G), and f a permutation on V(G). Define δf(x,y)=|d(x,y)d(f(x),f(y))| and δf(G)=δf(x,y), where the sum is taken over all unordered pairs x,y of distinct vertices of G. Denote by π(G) the smallest positive value of δf(G) among all permutations on V(G). A permutation f on V(G) is called a near automorphism of G if δf(G)=π(G). The kth power of G, written as Gk, also has V(G) as vertex set, but x and y are adjacent in Gk whenever d(x,y)k in G. The near automorphisms of the path Pn and its square Pn2 were described in Aitken (1999) and Wong et al. (2023), respectively. In this paper, we give the value of π(Pnk), and determine the near automorphisms of Pnk when 3kn2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信