{"title":"Comparing the p-independence number of regular graphs to the q-independence number of their line graphs","authors":"Yair Caro , Randy Davila , Ryan Pepper","doi":"10.1016/j.dam.2025.05.022","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a simple graph and let <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the <em>line graph</em> of <span><math><mi>G</mi></math></span>. A <span><math><mi>p</mi></math></span>-<em>independent</em> set in <span><math><mi>G</mi></math></span> is a set of vertices <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> such that the subgraph induced by <span><math><mi>S</mi></math></span> has maximum degree at most <span><math><mi>p</mi></math></span>. The <span><math><mi>p</mi></math></span>-<em>independence number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the cardinality of a maximum <span><math><mi>p</mi></math></span>-independent set in <span><math><mi>G</mi></math></span>. In this paper, and motivated by the recent result that independence number is at most matching number for regular graphs Caro et al., (2022), we investigate which values of the non-negative integers <span><math><mi>p</mi></math></span>, <span><math><mi>q</mi></math></span>, and <span><math><mi>r</mi></math></span> have the property that <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> for all r-regular graphs. Triples <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span> having this property are called <em>valid</em> <span><math><mi>α</mi></math></span><em>-triples</em>. Among the results we prove are: <ul><li><span>•</span><span><div><span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span> is valid <span><math><mi>α</mi></math></span>-triple for <span><math><mrow><mi>p</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span> , and <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>.</div></span></li><li><span>•</span><span><div><span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span> is valid <span><math><mi>α</mi></math></span>-triple for <span><math><mrow><mi>p</mi><mo>≤</mo><mi>q</mi><mo><</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>.</div></span></li><li><span>•</span><span><div><span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span> is valid <span><math><mi>α</mi></math></span>-triple for <span><math><mrow><mi>p</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>=</mo><mn>2</mn></mrow></math></span>, and <span><math><mi>r</mi></math></span> even.</div></span></li><li><span>•</span><span><div><span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span> is valid <span><math><mi>α</mi></math></span>-triple for <span><math><mrow><mi>p</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>=</mo><mn>2</mn></mrow></math></span>, and <span><math><mi>r</mi></math></span> odd with <span><math><mrow><mi>r</mi><mo>=</mo><mo>max</mo><mrow><mo>{</mo><mrow><mn>3</mn><mo>,</mo><mfrac><mrow><mn>17</mn><mrow><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>16</mn></mrow></mfrac></mrow><mo>}</mo></mrow></mrow></math></span>.</div></span></li></ul> We also show a close relation between undetermined possible valid <span><math><mi>α</mi></math></span>-triples, the Linear Aboricity Conjecture, and the Path-Cover Conjecture.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 316-326"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002653","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a simple graph and let denote the line graph of . A -independent set in is a set of vertices such that the subgraph induced by has maximum degree at most . The -independence number of , denoted by , is the cardinality of a maximum -independent set in . In this paper, and motivated by the recent result that independence number is at most matching number for regular graphs Caro et al., (2022), we investigate which values of the non-negative integers , , and have the property that for all r-regular graphs. Triples having this property are called valid-triples. Among the results we prove are:
•
is valid -triple for , , and .
•
is valid -triple for and .
•
is valid -triple for , , and even.
•
is valid -triple for , , and odd with .
We also show a close relation between undetermined possible valid -triples, the Linear Aboricity Conjecture, and the Path-Cover Conjecture.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.