广义饱和对策

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Balázs Patkós , Miloš Stojaković , Jelena Stratijev , Máté Vizer
{"title":"广义饱和对策","authors":"Balázs Patkós ,&nbsp;Miloš Stojaković ,&nbsp;Jelena Stratijev ,&nbsp;Máté Vizer","doi":"10.1016/j.dam.2025.05.014","DOIUrl":null,"url":null,"abstract":"<div><div>We study the following game version of the generalized graph Turán problem. For two fixed graphs <span><math><mi>F</mi></math></span> and <span><math><mi>H</mi></math></span>, two players, Max and Mini, alternately claim unclaimed edges of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that the graph <span><math><mi>G</mi></math></span> of the claimed edges must remain <span><math><mi>F</mi></math></span>-free throughout the game. The game ends when no further edges can be claimed, i.e. when <span><math><mi>G</mi></math></span> becomes <span><math><mi>F</mi></math></span>-saturated. The <span><math><mi>H</mi></math></span>-score of the game is the number of copies of <span><math><mi>H</mi></math></span> in <span><math><mi>G</mi></math></span>. Max aims to maximize the <span><math><mi>H</mi></math></span>-score, while Mini wants to minimize it. The <span><math><mi>H</mi></math></span>-score of the game when both players play optimally is denoted by <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>#</mi><mi>H</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> when Max starts, and by <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>#</mi><mi>H</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> when Mini starts. We study these values for several natural choices of <span><math><mi>F</mi></math></span> and <span><math><mi>H</mi></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"374 ","pages":"Pages 33-49"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized saturation game\",\"authors\":\"Balázs Patkós ,&nbsp;Miloš Stojaković ,&nbsp;Jelena Stratijev ,&nbsp;Máté Vizer\",\"doi\":\"10.1016/j.dam.2025.05.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the following game version of the generalized graph Turán problem. For two fixed graphs <span><math><mi>F</mi></math></span> and <span><math><mi>H</mi></math></span>, two players, Max and Mini, alternately claim unclaimed edges of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that the graph <span><math><mi>G</mi></math></span> of the claimed edges must remain <span><math><mi>F</mi></math></span>-free throughout the game. The game ends when no further edges can be claimed, i.e. when <span><math><mi>G</mi></math></span> becomes <span><math><mi>F</mi></math></span>-saturated. The <span><math><mi>H</mi></math></span>-score of the game is the number of copies of <span><math><mi>H</mi></math></span> in <span><math><mi>G</mi></math></span>. Max aims to maximize the <span><math><mi>H</mi></math></span>-score, while Mini wants to minimize it. The <span><math><mi>H</mi></math></span>-score of the game when both players play optimally is denoted by <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>#</mi><mi>H</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> when Max starts, and by <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>#</mi><mi>H</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> when Mini starts. We study these values for several natural choices of <span><math><mi>F</mi></math></span> and <span><math><mi>H</mi></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"374 \",\"pages\":\"Pages 33-49\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002598\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002598","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究以下广义图Turán问题的博弈版本。对于两个固定的图F和H,两个玩家,Max和Mini,轮流要求完全图Kn的未被要求的边,这样要求的边的图G在整个游戏中必须保持F-free。游戏结束时,没有进一步的边可以要求,即当G成为f饱和。游戏的H值是H在g中的拷贝数。Max的目标是最大化H值,而Mini的目标是最小化H值。当两个玩家都处于最佳状态时,游戏的H值在Max开始时用s1(n,#H,F)表示,在Mini开始时用s2(n,#H,F)表示。我们研究了F和H的几种自然选择的这些值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized saturation game
We study the following game version of the generalized graph Turán problem. For two fixed graphs F and H, two players, Max and Mini, alternately claim unclaimed edges of the complete graph Kn such that the graph G of the claimed edges must remain F-free throughout the game. The game ends when no further edges can be claimed, i.e. when G becomes F-saturated. The H-score of the game is the number of copies of H in G. Max aims to maximize the H-score, while Mini wants to minimize it. The H-score of the game when both players play optimally is denoted by s1(n,#H,F) when Max starts, and by s2(n,#H,F) when Mini starts. We study these values for several natural choices of F and H.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信