Balázs Patkós , Miloš Stojaković , Jelena Stratijev , Máté Vizer
{"title":"广义饱和对策","authors":"Balázs Patkós , Miloš Stojaković , Jelena Stratijev , Máté Vizer","doi":"10.1016/j.dam.2025.05.014","DOIUrl":null,"url":null,"abstract":"<div><div>We study the following game version of the generalized graph Turán problem. For two fixed graphs <span><math><mi>F</mi></math></span> and <span><math><mi>H</mi></math></span>, two players, Max and Mini, alternately claim unclaimed edges of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that the graph <span><math><mi>G</mi></math></span> of the claimed edges must remain <span><math><mi>F</mi></math></span>-free throughout the game. The game ends when no further edges can be claimed, i.e. when <span><math><mi>G</mi></math></span> becomes <span><math><mi>F</mi></math></span>-saturated. The <span><math><mi>H</mi></math></span>-score of the game is the number of copies of <span><math><mi>H</mi></math></span> in <span><math><mi>G</mi></math></span>. Max aims to maximize the <span><math><mi>H</mi></math></span>-score, while Mini wants to minimize it. The <span><math><mi>H</mi></math></span>-score of the game when both players play optimally is denoted by <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>#</mi><mi>H</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> when Max starts, and by <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>#</mi><mi>H</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> when Mini starts. We study these values for several natural choices of <span><math><mi>F</mi></math></span> and <span><math><mi>H</mi></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"374 ","pages":"Pages 33-49"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized saturation game\",\"authors\":\"Balázs Patkós , Miloš Stojaković , Jelena Stratijev , Máté Vizer\",\"doi\":\"10.1016/j.dam.2025.05.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the following game version of the generalized graph Turán problem. For two fixed graphs <span><math><mi>F</mi></math></span> and <span><math><mi>H</mi></math></span>, two players, Max and Mini, alternately claim unclaimed edges of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that the graph <span><math><mi>G</mi></math></span> of the claimed edges must remain <span><math><mi>F</mi></math></span>-free throughout the game. The game ends when no further edges can be claimed, i.e. when <span><math><mi>G</mi></math></span> becomes <span><math><mi>F</mi></math></span>-saturated. The <span><math><mi>H</mi></math></span>-score of the game is the number of copies of <span><math><mi>H</mi></math></span> in <span><math><mi>G</mi></math></span>. Max aims to maximize the <span><math><mi>H</mi></math></span>-score, while Mini wants to minimize it. The <span><math><mi>H</mi></math></span>-score of the game when both players play optimally is denoted by <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>#</mi><mi>H</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> when Max starts, and by <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>#</mi><mi>H</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> when Mini starts. We study these values for several natural choices of <span><math><mi>F</mi></math></span> and <span><math><mi>H</mi></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"374 \",\"pages\":\"Pages 33-49\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002598\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002598","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We study the following game version of the generalized graph Turán problem. For two fixed graphs and , two players, Max and Mini, alternately claim unclaimed edges of the complete graph such that the graph of the claimed edges must remain -free throughout the game. The game ends when no further edges can be claimed, i.e. when becomes -saturated. The -score of the game is the number of copies of in . Max aims to maximize the -score, while Mini wants to minimize it. The -score of the game when both players play optimally is denoted by when Max starts, and by when Mini starts. We study these values for several natural choices of and .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.