Tight conditions for spanning trees with leaf degree at most k in graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jifu Lin , Hechao Liu , Lihua You
{"title":"Tight conditions for spanning trees with leaf degree at most k in graphs","authors":"Jifu Lin ,&nbsp;Hechao Liu ,&nbsp;Lihua You","doi":"10.1016/j.dam.2025.05.016","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>k</mi></math></span> be a positive integer, <span><math><mi>G</mi></math></span> be a connected graph of order <span><math><mi>n</mi></math></span>, and <span><math><mi>T</mi></math></span> be a tree. For <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, the leaf degree of <span><math><mi>v</mi></math></span> is defined as <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>l</mi><mi>e</mi><mi>a</mi><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mrow><mo>{</mo><mi>u</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>T</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∣</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>T</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>}</mo></mrow><mo>|</mo></mrow></mrow></math></span>. The leaf degree of <span><math><mi>T</mi></math></span> is defined as <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>l</mi><mi>e</mi><mi>a</mi><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mo>max</mo><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>l</mi><mi>e</mi><mi>a</mi><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∣</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>. In this paper, motivated by the structure condition of Kaneko (2001), we obtain some tight conditions in <span><math><mi>G</mi></math></span> with respect to the size or the spectral radius to ensure that <span><math><mi>G</mi></math></span> has a spanning tree <span><math><mi>T</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>l</mi><mi>e</mi><mi>a</mi><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span>, which improves the result of <span><span>[2]</span></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"374 ","pages":"Pages 97-104"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002616","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let k be a positive integer, G be a connected graph of order n, and T be a tree. For vV(T), the leaf degree of v is defined as dleaf(v)=|{uNT(v)dT(u)=1}|. The leaf degree of T is defined as dleaf(T)=max{dleaf(v)vV(T)}. In this paper, motivated by the structure condition of Kaneko (2001), we obtain some tight conditions in G with respect to the size or the spectral radius to ensure that G has a spanning tree T with dleaf(T)k, which improves the result of [2].
图中叶度最大为k的生成树的严密条件
设k为正整数,G为n阶连通图,T为树。对于v∈v (T),定义v的叶度为dleaf(v)=|{u∈NT(v)∣dT(u)=1}|。定义T的叶度为dleaf(T)=max{dleaf(v)∣v∈v (T)}。本文从Kaneko(2001)的结构条件出发,在G中得到了关于谱半径大小或谱半径的一些紧条件,以保证G具有一棵叶导(T)≤k的生成树T,从而改进了[2]的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信