{"title":"最大次为3的图的优美着色","authors":"Paola T. Pantoja , Simone Dantas , Atílio G. Luiz","doi":"10.1016/j.dam.2025.05.013","DOIUrl":null,"url":null,"abstract":"<div><div>A <em>graceful</em> <span><math><mi>k</mi></math></span><em>-coloring</em> of a graph <span><math><mi>G</mi></math></span> consists of a proper vertex coloring <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> that induces a proper edge coloring. In this case, the color assigned to an edge <span><math><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is determined by the absolute value of the difference between the colors assigned to vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span>. The minimum <span><math><mi>k</mi></math></span> for which a graph <span><math><mi>G</mi></math></span> has a graceful <span><math><mi>k</mi></math></span>-coloring is the <em>graceful chromatic number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we establish the first known upper bound for the graceful chromatic number of an arbitrary graph, in terms of its maximum degree <span><math><mi>Δ</mi></math></span>, i.e., we prove that the graceful chromatic number satisfies the inequality <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>5</mn><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>3</mn><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></math></span>. This result provides the first upper bound for <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> of complete graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and represents an improvement over a previous finding by Bi et al. (2017) for regular complete <span><math><mi>k</mi></math></span>-partite graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></msub></math></span>. We demonstrate the <span><math><mi>NP</mi></math></span>-completeness of the problem of determining whether a graph <span><math><mi>G</mi></math></span> has a graceful 5-coloring. Furthermore, we extend our investigation to subcubic graphs, establishing upper bounds for the graceful chromatic number of families of subcubic graphs without adjacent vertices of maximum degree. Additionally, we determine the graceful chromatic number for two cubic graph classes, namely Flower snarks and Goldberg snarks.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"374 ","pages":"Pages 75-96"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graceful colorings of graphs with maximum degree three\",\"authors\":\"Paola T. Pantoja , Simone Dantas , Atílio G. Luiz\",\"doi\":\"10.1016/j.dam.2025.05.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <em>graceful</em> <span><math><mi>k</mi></math></span><em>-coloring</em> of a graph <span><math><mi>G</mi></math></span> consists of a proper vertex coloring <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> that induces a proper edge coloring. In this case, the color assigned to an edge <span><math><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is determined by the absolute value of the difference between the colors assigned to vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span>. The minimum <span><math><mi>k</mi></math></span> for which a graph <span><math><mi>G</mi></math></span> has a graceful <span><math><mi>k</mi></math></span>-coloring is the <em>graceful chromatic number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we establish the first known upper bound for the graceful chromatic number of an arbitrary graph, in terms of its maximum degree <span><math><mi>Δ</mi></math></span>, i.e., we prove that the graceful chromatic number satisfies the inequality <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>5</mn><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>3</mn><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></math></span>. This result provides the first upper bound for <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> of complete graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and represents an improvement over a previous finding by Bi et al. (2017) for regular complete <span><math><mi>k</mi></math></span>-partite graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></msub></math></span>. We demonstrate the <span><math><mi>NP</mi></math></span>-completeness of the problem of determining whether a graph <span><math><mi>G</mi></math></span> has a graceful 5-coloring. Furthermore, we extend our investigation to subcubic graphs, establishing upper bounds for the graceful chromatic number of families of subcubic graphs without adjacent vertices of maximum degree. Additionally, we determine the graceful chromatic number for two cubic graph classes, namely Flower snarks and Goldberg snarks.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"374 \",\"pages\":\"Pages 75-96\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002604\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002604","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Graceful colorings of graphs with maximum degree three
A graceful-coloring of a graph consists of a proper vertex coloring that induces a proper edge coloring. In this case, the color assigned to an edge is determined by the absolute value of the difference between the colors assigned to vertices and . The minimum for which a graph has a graceful -coloring is the graceful chromatic number of , denoted by . In this paper, we establish the first known upper bound for the graceful chromatic number of an arbitrary graph, in terms of its maximum degree , i.e., we prove that the graceful chromatic number satisfies the inequality . This result provides the first upper bound for of complete graphs , and represents an improvement over a previous finding by Bi et al. (2017) for regular complete -partite graphs . We demonstrate the -completeness of the problem of determining whether a graph has a graceful 5-coloring. Furthermore, we extend our investigation to subcubic graphs, establishing upper bounds for the graceful chromatic number of families of subcubic graphs without adjacent vertices of maximum degree. Additionally, we determine the graceful chromatic number for two cubic graph classes, namely Flower snarks and Goldberg snarks.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.