Hybrid intermittent fault diagnosis of general graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Lulu Yang , Shuming Zhou , Weixing Zheng
{"title":"Hybrid intermittent fault diagnosis of general graphs","authors":"Lulu Yang ,&nbsp;Shuming Zhou ,&nbsp;Weixing Zheng","doi":"10.1016/j.dam.2025.05.009","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of information technology, networks have emerged as a crucial infrastructure in the big data era. System-level fault diagnosis plays a vital role to locate and repair faulty nodes in networks. However, the majority of research primarily focus on diagnosing faulty nodes of regular networks, with comparably less attention devoted to fault identification in irregular networks under the circumstance of link failures. In this paper, we introduce the notion of hybrid intermittent fault diagnosability and derive the corresponding diagnosability for general networks. Additionally, we determine the hybrid intermittent fault diagnosability for various well-known networks. Furthermore, we propose a HIFPD-MM* algorithm, which possesses a time complexity of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>k</mi><mo>×</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mi>⋅</mi><msup><mrow><mrow><mo>(</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>k</mi></math></span> denotes the number of stages of the algorithm in one round, and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the maximum degree of graph <span><math><mi>G</mi></math></span>. Through extensive experiments conducted on hypercubes and real-world datasets, we validate the effectiveness and accuracy of our proposed algorithm.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"374 ","pages":"Pages 16-32"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002549","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of information technology, networks have emerged as a crucial infrastructure in the big data era. System-level fault diagnosis plays a vital role to locate and repair faulty nodes in networks. However, the majority of research primarily focus on diagnosing faulty nodes of regular networks, with comparably less attention devoted to fault identification in irregular networks under the circumstance of link failures. In this paper, we introduce the notion of hybrid intermittent fault diagnosability and derive the corresponding diagnosability for general networks. Additionally, we determine the hybrid intermittent fault diagnosability for various well-known networks. Furthermore, we propose a HIFPD-MM* algorithm, which possesses a time complexity of O(k×|V(G)|(Δ(G))2), where k denotes the number of stages of the algorithm in one round, and Δ(G) denotes the maximum degree of graph G. Through extensive experiments conducted on hypercubes and real-world datasets, we validate the effectiveness and accuracy of our proposed algorithm.
通用图的混合间歇故障诊断
随着信息技术的飞速发展,网络已成为大数据时代的重要基础设施。系统级故障诊断对于网络中故障节点的定位和修复起着至关重要的作用。然而,大多数研究主要集中在规则网络故障节点的诊断上,而对链路故障情况下不规则网络故障识别的研究相对较少。本文引入了混合间歇故障可诊断性的概念,并推导了一般网络的可诊断性。此外,我们还确定了各种已知网络的混合间歇故障可诊断性。此外,我们提出了一种HIFPD-MM*算法,其时间复杂度为O(kx |V(G)|⋅(Δ(G))2),其中k表示算法在一轮中的阶段数,Δ(G)表示图G的最大程度。通过在超立方体和真实数据集上进行的大量实验,我们验证了我们提出的算法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信