Ergodic Theory and Dynamical Systems最新文献

筛选
英文 中文
Stable laws for random dynamical systems 随机动力系统的稳定规律
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-02-14 DOI: 10.1017/etds.2024.5
ROMAIN AIMINO, MATTHEW NICOL, ANDREW TÖRÖK
{"title":"Stable laws for random dynamical systems","authors":"ROMAIN AIMINO, MATTHEW NICOL, ANDREW TÖRÖK","doi":"10.1017/etds.2024.5","DOIUrl":"https://doi.org/10.1017/etds.2024.5","url":null,"abstract":"In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline1.png\" /> <jats:tex-math> $[0,1]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline2.png\" /> <jats:tex-math> $nu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We consider a class of non-square-integrable observables <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline3.png\" /> <jats:tex-math> $phi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mostly of form <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline4.png\" /> <jats:tex-math> $phi (x)=d(x,x_0)^{-{1}/{alpha }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline5.png\" /> <jats:tex-math> $x_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline6.png\" /> <jats:tex-math> $alpha in (0,2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The two types of maps we concatenate are a class of piecewise <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline7.png\" /> <jats:tex-math> $C^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline8.png\" /> <jats:tex-math> $alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants fo","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"20 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimension estimates and approximation in non-uniformly hyperbolic systems 非均匀双曲系统中的维度估计和近似值
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-02-12 DOI: 10.1017/etds.2024.3
JUAN WANG, YONGLUO CAO, YUN ZHAO
{"title":"Dimension estimates and approximation in non-uniformly hyperbolic systems","authors":"JUAN WANG, YONGLUO CAO, YUN ZHAO","doi":"10.1017/etds.2024.3","DOIUrl":"https://doi.org/10.1017/etds.2024.3","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline1.png\" /> <jats:tex-math> $f: Mrightarrow M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline2.png\" /> <jats:tex-math> $C^{1+alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> diffeomorphism on an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline3.png\" /> <jats:tex-math> $m_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional compact smooth Riemannian manifold <jats:italic>M</jats:italic> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline4.png\" /> <jats:tex-math> $mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> a hyperbolic ergodic <jats:italic>f</jats:italic>-invariant probability measure. This paper obtains an upper bound for the stable (unstable) pointwise dimension of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline5.png\" /> <jats:tex-math> $mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is given by the unique solution of an equation involving the sub-additive measure-theoretic pressure. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline6.png\" /> <jats:tex-math> $mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a Sinai–Ruelle–Bowen (SRB) measure, then the Kaplan–Yorke conjecture is true under some additional conditions and the Lyapunov dimension of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline7.png\" /> <jats:tex-math> $mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> can be approximated gradually by the Hausdorff dimension of a sequence of hyperbolic sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline8.png\" /> <jats:tex-math> ${Lambda _n}_{ngeq 1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The limit behaviour of the Carathéodory singular dimension of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline9.png\" /> <jats:tex-math> $Lambda _n$ </jats:tex-math> </jats:alternatives> </jats:inl","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"235 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularity and linear response formula of the SRB measures for solenoidal attractors 螺线吸引子 SRB 测量的正则性和线性响应公式
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-02-06 DOI: 10.1017/etds.2023.121
CARLOS BOCKER, RICARDO BORTOLOTTI, ARMANDO CASTRO
{"title":"Regularity and linear response formula of the SRB measures for solenoidal attractors","authors":"CARLOS BOCKER, RICARDO BORTOLOTTI, ARMANDO CASTRO","doi":"10.1017/etds.2023.121","DOIUrl":"https://doi.org/10.1017/etds.2023.121","url":null,"abstract":"We show that a class of higher-dimensional hyperbolic endomorphisms admit absolutely continuous invariant probabilities whose densities are regular and vary differentiably with respect to the dynamical system. The maps we consider are skew-products given by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline1.png\" /> <jats:tex-math> $T(x,y) = (E (x), C(x,y))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>E</jats:italic> is an expanding map of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline2.png\" /> <jats:tex-math> $mathbb {T}^u$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>C</jats:italic> is a contracting map on each fiber. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline3.png\" /> <jats:tex-math> $inf |!det DT| inf | (D_yC)^{-1}| ^{-2s}>1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline4.png\" /> <jats:tex-math> ${s<r-(({u+d})/{2}+1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline5.png\" /> <jats:tex-math> $r geq 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:italic>T</jats:italic> satisfies a transversality condition between overlaps of iterates of <jats:italic>T</jats:italic> (a condition which we prove to be <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline6.png\" /> <jats:tex-math> $C^r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generic under mild assumptions), then the SRB measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline7.png\" /> <jats:tex-math> $mu _T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>T</jats:italic> is absolutely continuous and its density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline8.png\" /> <jats:tex-math> $h_T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> belongs to the Sobolev space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S01433857230","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"15 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lifting generic points 提升通用点
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-02-05 DOI: 10.1017/etds.2023.119
TOMASZ DOWNAROWICZ, BENJAMIN WEISS
{"title":"Lifting generic points","authors":"TOMASZ DOWNAROWICZ, BENJAMIN WEISS","doi":"10.1017/etds.2023.119","DOIUrl":"https://doi.org/10.1017/etds.2023.119","url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(X,T)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(Y,S)$</span></span></img></span></span> be two topological dynamical systems, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(X,T)$</span></span></img></span></span> has the weak specification property. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$xi $</span></span></img></span></span> be an invariant measure on the product system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(Xtimes Y, Ttimes S)$</span></span></img></span></span> with marginals <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$mu $</span></span></img></span></span> on <span>X</span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$nu $</span></span></img></span></span> on <span>Y</span>, with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$mu $</span></span></img></span></span> ergodic. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$yin Y$</span></span></img></span></span> be quasi-generic for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"9 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139688522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Actions of discrete amenable groups into the normalizers of full groups of ergodic transformations 离散可配位群作用于遍历变换全群的归一化子
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-02-05 DOI: 10.1017/etds.2023.122
TOSHIHIKO MASUDA
{"title":"Actions of discrete amenable groups into the normalizers of full groups of ergodic transformations","authors":"TOSHIHIKO MASUDA","doi":"10.1017/etds.2023.122","DOIUrl":"https://doi.org/10.1017/etds.2023.122","url":null,"abstract":"<p>We apply the Evans–Kishimoto intertwining argument to the classification of actions of discrete amenable groups into the normalizer of a full group of an ergodic transformation. Our proof does not depend on the types of ergodic transformations.</p>","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139688689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicity of topological systems 拓扑系统的多重性
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-02-05 DOI: 10.1017/etds.2023.118
DAVID BURGUET, RUXI SHI
{"title":"Multiplicity of topological systems","authors":"DAVID BURGUET, RUXI SHI","doi":"10.1017/etds.2023.118","DOIUrl":"https://doi.org/10.1017/etds.2023.118","url":null,"abstract":"<p>We define the topological multiplicity of an invertible topological system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(X,T)$</span></span></img></span></span> as the minimal number <span>k</span> of real continuous functions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$f_1,ldots , f_k$</span></span></img></span></span> such that the functions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f_icirc T^n$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$nin {mathbb {Z}}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$1leq ileq k,$</span></span></img></span></span> span a dense linear vector space in the space of real continuous functions on <span>X</span> endowed with the supremum norm. We study some properties of topological systems with finite multiplicity. After giving some examples, we investigate the multiplicity of subshifts with linear growth complexity.</p>","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"9 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139688710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eliminating Thurston obstructions and controlling dynamics on curves 消除瑟斯顿障碍,控制弯道动态
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-01-17 DOI: 10.1017/etds.2023.114
MARIO BONK, MIKHAIL HLUSHCHANKA, ANNINA ISELI
{"title":"Eliminating Thurston obstructions and controlling dynamics on curves","authors":"MARIO BONK, MIKHAIL HLUSHCHANKA, ANNINA ISELI","doi":"10.1017/etds.2023.114","DOIUrl":"https://doi.org/10.1017/etds.2023.114","url":null,"abstract":"&lt;p&gt;Every Thurston map &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline1.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$fcolon S^2rightarrow S^2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; on a &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-sphere &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$S^2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; induces a pull-back operation on Jordan curves &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$alpha subset S^2smallsetminus {P_f}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, where &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;${P_f}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is the postcritical set of &lt;span&gt;f&lt;/span&gt;. Here the isotopy class &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$[f^{-1}(alpha )]$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; (relative to &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;${P_f}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;) only depends on the isotopy class &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$[alpha ]$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the map &lt;span&gt;f&lt;/span&gt; can be seen as a fixed point of the pull-back operation. We show that if a Thurston map &lt;span&gt;f&lt;/span&gt; with a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https:/","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"24 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139481359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ETS volume 44 issue 2 Cover and Back matter ETS 第 44 卷第 2 期封面和封底资料
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-01-08 DOI: 10.1017/etds.2023.80
{"title":"ETS volume 44 issue 2 Cover and Back matter","authors":"","doi":"10.1017/etds.2023.80","DOIUrl":"https://doi.org/10.1017/etds.2023.80","url":null,"abstract":"","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"37 2","pages":"b1 - b2"},"PeriodicalIF":0.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139380041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint partial equidistribution of Farey rays in negatively curved manifolds and trees 负弯曲流形和树中法雷射线的联合局部等分布
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-01-08 DOI: 10.1017/etds.2023.116
JOUNI PARKKONEN, FRÉDÉRIC PAULIN
{"title":"Joint partial equidistribution of Farey rays in negatively curved manifolds and trees","authors":"JOUNI PARKKONEN, FRÉDÉRIC PAULIN","doi":"10.1017/etds.2023.116","DOIUrl":"https://doi.org/10.1017/etds.2023.116","url":null,"abstract":"<p>We prove a joint partial equidistribution result for common perpendiculars with given density on equidistributing equidistant hypersurfaces, towards a measure supported on truncated stable leaves. We recover a result of Marklof on the joint partial equidistribution of Farey fractions at a given density, and give several analogous arithmetic applications, including in Bruhat–Tits trees.</p>","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"8 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139396993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ETS volume 44 issue 2 Cover and Front matter ETS 第 44 卷第 2 期封面和封底
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-01-08 DOI: 10.1017/etds.2023.79
{"title":"ETS volume 44 issue 2 Cover and Front matter","authors":"","doi":"10.1017/etds.2023.79","DOIUrl":"https://doi.org/10.1017/etds.2023.79","url":null,"abstract":"","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"34 11","pages":"f1 - f2"},"PeriodicalIF":0.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139380099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信