消除瑟斯顿障碍,控制弯道动态

IF 0.8 3区 数学 Q2 MATHEMATICS
MARIO BONK, MIKHAIL HLUSHCHANKA, ANNINA ISELI
{"title":"消除瑟斯顿障碍,控制弯道动态","authors":"MARIO BONK, MIKHAIL HLUSHCHANKA, ANNINA ISELI","doi":"10.1017/etds.2023.114","DOIUrl":null,"url":null,"abstract":"<p>Every Thurston map <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$f\\colon S^2\\rightarrow S^2$</span></span></img></span></span> on a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>-sphere <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$S^2$</span></span></img></span></span> induces a pull-back operation on Jordan curves <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\alpha \\subset S^2\\smallsetminus {P_f}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${P_f}$</span></span></img></span></span> is the postcritical set of <span>f</span>. Here the isotopy class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$[f^{-1}(\\alpha )]$</span></span></img></span></span> (relative to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline7.png\"><span data-mathjax-type=\"texmath\"><span>${P_f}$</span></span></img></span></span>) only depends on the isotopy class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$[\\alpha ]$</span></span></img></span></span>. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the map <span>f</span> can be seen as a fixed point of the pull-back operation. We show that if a Thurston map <span>f</span> with a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>-sphere and construct a new Thurston map <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\widehat f$</span></span></img></span></span> for which this obstruction is eliminated. We prove that no other obstruction arises and so <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\widehat f$</span></span></img></span></span> is realized by a rational map. In particular, this allows for the combinatorial construction of a large class of rational Thurston maps with four postcritical points. We also study the dynamics of the pull-back operation under iteration. We exhibit a subclass of our rational Thurston maps with four postcritical points for which we can give positive answer to the global curve attractor problem.</p>","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"24 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eliminating Thurston obstructions and controlling dynamics on curves\",\"authors\":\"MARIO BONK, MIKHAIL HLUSHCHANKA, ANNINA ISELI\",\"doi\":\"10.1017/etds.2023.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Every Thurston map <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f\\\\colon S^2\\\\rightarrow S^2$</span></span></img></span></span> on a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2$</span></span></img></span></span>-sphere <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S^2$</span></span></img></span></span> induces a pull-back operation on Jordan curves <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\alpha \\\\subset S^2\\\\smallsetminus {P_f}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${P_f}$</span></span></img></span></span> is the postcritical set of <span>f</span>. Here the isotopy class <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[f^{-1}(\\\\alpha )]$</span></span></img></span></span> (relative to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${P_f}$</span></span></img></span></span>) only depends on the isotopy class <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[\\\\alpha ]$</span></span></img></span></span>. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the map <span>f</span> can be seen as a fixed point of the pull-back operation. We show that if a Thurston map <span>f</span> with a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2$</span></span></img></span></span>-sphere and construct a new Thurston map <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\widehat f$</span></span></img></span></span> for which this obstruction is eliminated. We prove that no other obstruction arises and so <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\widehat f$</span></span></img></span></span> is realized by a rational map. In particular, this allows for the combinatorial construction of a large class of rational Thurston maps with four postcritical points. We also study the dynamics of the pull-back operation under iteration. We exhibit a subclass of our rational Thurston maps with four postcritical points for which we can give positive answer to the global curve attractor problem.</p>\",\"PeriodicalId\":50504,\"journal\":{\"name\":\"Ergodic Theory and Dynamical Systems\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergodic Theory and Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.114\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2023.114","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在 2 美元球$S^2$上的每个瑟斯顿映射 $f\colon S^2\rightarrow S^2$ 都会在乔丹曲线 $\alpha \subset S^2\smallsetminus {P_f}$ 上引起一个回拉操作,其中 ${P_f}$ 是 f 的后临界集合。这里的等价类 $[f^{-1}(\alpha )]$ (相对于 ${P_f}$)只取决于等价类 $[\alpha ]$。我们研究了具有四个后临界点的瑟斯顿映射的这一操作。在这种情况下,图 f 的瑟斯顿障碍可以看作是回拉操作的一个定点。我们证明,如果一个具有双曲球面和四个后临界点的瑟斯顿映射 f 有瑟斯顿障碍,那么我们可以 "炸掉 "底层 2 美元球面中合适的弧,并构造一个新的瑟斯顿映射 $\widehat f$,这个映射的瑟斯顿障碍就会被消除。我们证明不会出现其他障碍,因此$\widehat f$ 是由有理映射实现的。特别是,这使得我们可以组合构造一大类具有四个后临界点的有理瑟斯顿映射。我们还研究了迭代下回拉操作的动力学。我们展示了具有四个后临界点的有理瑟斯顿映射的一个子类,对于这个子类,我们可以给出全局曲线吸引子问题的正面答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eliminating Thurston obstructions and controlling dynamics on curves

Every Thurston map $f\colon S^2\rightarrow S^2$ on a $2$-sphere $S^2$ induces a pull-back operation on Jordan curves $\alpha \subset S^2\smallsetminus {P_f}$, where ${P_f}$ is the postcritical set of f. Here the isotopy class $[f^{-1}(\alpha )]$ (relative to ${P_f}$) only depends on the isotopy class $[\alpha ]$. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the map f can be seen as a fixed point of the pull-back operation. We show that if a Thurston map f with a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying $2$-sphere and construct a new Thurston map $\widehat f$ for which this obstruction is eliminated. We prove that no other obstruction arises and so $\widehat f$ is realized by a rational map. In particular, this allows for the combinatorial construction of a large class of rational Thurston maps with four postcritical points. We also study the dynamics of the pull-back operation under iteration. We exhibit a subclass of our rational Thurston maps with four postcritical points for which we can give positive answer to the global curve attractor problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
11.10%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信