{"title":"消除瑟斯顿障碍,控制弯道动态","authors":"MARIO BONK, MIKHAIL HLUSHCHANKA, ANNINA ISELI","doi":"10.1017/etds.2023.114","DOIUrl":null,"url":null,"abstract":"<p>Every Thurston map <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$f\\colon S^2\\rightarrow S^2$</span></span></img></span></span> on a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>-sphere <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$S^2$</span></span></img></span></span> induces a pull-back operation on Jordan curves <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\alpha \\subset S^2\\smallsetminus {P_f}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${P_f}$</span></span></img></span></span> is the postcritical set of <span>f</span>. Here the isotopy class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$[f^{-1}(\\alpha )]$</span></span></img></span></span> (relative to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline7.png\"><span data-mathjax-type=\"texmath\"><span>${P_f}$</span></span></img></span></span>) only depends on the isotopy class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$[\\alpha ]$</span></span></img></span></span>. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the map <span>f</span> can be seen as a fixed point of the pull-back operation. We show that if a Thurston map <span>f</span> with a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>-sphere and construct a new Thurston map <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\widehat f$</span></span></img></span></span> for which this obstruction is eliminated. We prove that no other obstruction arises and so <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\widehat f$</span></span></img></span></span> is realized by a rational map. In particular, this allows for the combinatorial construction of a large class of rational Thurston maps with four postcritical points. We also study the dynamics of the pull-back operation under iteration. We exhibit a subclass of our rational Thurston maps with four postcritical points for which we can give positive answer to the global curve attractor problem.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eliminating Thurston obstructions and controlling dynamics on curves\",\"authors\":\"MARIO BONK, MIKHAIL HLUSHCHANKA, ANNINA ISELI\",\"doi\":\"10.1017/etds.2023.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Every Thurston map <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f\\\\colon S^2\\\\rightarrow S^2$</span></span></img></span></span> on a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2$</span></span></img></span></span>-sphere <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S^2$</span></span></img></span></span> induces a pull-back operation on Jordan curves <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\alpha \\\\subset S^2\\\\smallsetminus {P_f}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${P_f}$</span></span></img></span></span> is the postcritical set of <span>f</span>. Here the isotopy class <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[f^{-1}(\\\\alpha )]$</span></span></img></span></span> (relative to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${P_f}$</span></span></img></span></span>) only depends on the isotopy class <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[\\\\alpha ]$</span></span></img></span></span>. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the map <span>f</span> can be seen as a fixed point of the pull-back operation. We show that if a Thurston map <span>f</span> with a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2$</span></span></img></span></span>-sphere and construct a new Thurston map <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\widehat f$</span></span></img></span></span> for which this obstruction is eliminated. We prove that no other obstruction arises and so <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116121843232-0091:S0143385723001141:S0143385723001141_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\widehat f$</span></span></img></span></span> is realized by a rational map. In particular, this allows for the combinatorial construction of a large class of rational Thurston maps with four postcritical points. We also study the dynamics of the pull-back operation under iteration. We exhibit a subclass of our rational Thurston maps with four postcritical points for which we can give positive answer to the global curve attractor problem.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2023.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eliminating Thurston obstructions and controlling dynamics on curves
Every Thurston map $f\colon S^2\rightarrow S^2$ on a $2$-sphere $S^2$ induces a pull-back operation on Jordan curves $\alpha \subset S^2\smallsetminus {P_f}$, where ${P_f}$ is the postcritical set of f. Here the isotopy class $[f^{-1}(\alpha )]$ (relative to ${P_f}$) only depends on the isotopy class $[\alpha ]$. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the map f can be seen as a fixed point of the pull-back operation. We show that if a Thurston map f with a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying $2$-sphere and construct a new Thurston map $\widehat f$ for which this obstruction is eliminated. We prove that no other obstruction arises and so $\widehat f$ is realized by a rational map. In particular, this allows for the combinatorial construction of a large class of rational Thurston maps with four postcritical points. We also study the dynamics of the pull-back operation under iteration. We exhibit a subclass of our rational Thurston maps with four postcritical points for which we can give positive answer to the global curve attractor problem.