{"title":"Multiplicity of topological systems","authors":"DAVID BURGUET, RUXI SHI","doi":"10.1017/etds.2023.118","DOIUrl":null,"url":null,"abstract":"<p>We define the topological multiplicity of an invertible topological system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(X,T)$</span></span></img></span></span> as the minimal number <span>k</span> of real continuous functions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$f_1,\\ldots , f_k$</span></span></img></span></span> such that the functions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f_i\\circ T^n$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n\\in {\\mathbb {Z}}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$1\\leq i\\leq k,$</span></span></img></span></span> span a dense linear vector space in the space of real continuous functions on <span>X</span> endowed with the supremum norm. We study some properties of topological systems with finite multiplicity. After giving some examples, we investigate the multiplicity of subshifts with linear growth complexity.</p>","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"9 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2023.118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We define the topological multiplicity of an invertible topological system $(X,T)$ as the minimal number k of real continuous functions $f_1,\ldots , f_k$ such that the functions $f_i\circ T^n$, $n\in {\mathbb {Z}}$, $1\leq i\leq k,$ span a dense linear vector space in the space of real continuous functions on X endowed with the supremum norm. We study some properties of topological systems with finite multiplicity. After giving some examples, we investigate the multiplicity of subshifts with linear growth complexity.
期刊介绍:
Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.