螺线吸引子 SRB 测量的正则性和线性响应公式

Pub Date : 2024-02-06 DOI:10.1017/etds.2023.121
CARLOS BOCKER, RICARDO BORTOLOTTI, ARMANDO CASTRO
{"title":"螺线吸引子 SRB 测量的正则性和线性响应公式","authors":"CARLOS BOCKER, RICARDO BORTOLOTTI, ARMANDO CASTRO","doi":"10.1017/etds.2023.121","DOIUrl":null,"url":null,"abstract":"We show that a class of higher-dimensional hyperbolic endomorphisms admit absolutely continuous invariant probabilities whose densities are regular and vary differentiably with respect to the dynamical system. The maps we consider are skew-products given by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline1.png\" /> <jats:tex-math> $T(x,y) = (E (x), C(x,y))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>E</jats:italic> is an expanding map of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline2.png\" /> <jats:tex-math> $\\mathbb {T}^u$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>C</jats:italic> is a contracting map on each fiber. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline3.png\" /> <jats:tex-math> $\\inf |\\!\\det DT| \\inf \\| (D_yC)^{-1}\\| ^{-2s}&gt;1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline4.png\" /> <jats:tex-math> ${s&lt;r-(({u+d})/{2}+1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline5.png\" /> <jats:tex-math> $r \\geq 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:italic>T</jats:italic> satisfies a transversality condition between overlaps of iterates of <jats:italic>T</jats:italic> (a condition which we prove to be <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline6.png\" /> <jats:tex-math> $C^r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generic under mild assumptions), then the SRB measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline7.png\" /> <jats:tex-math> $\\mu _T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>T</jats:italic> is absolutely continuous and its density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline8.png\" /> <jats:tex-math> $h_T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> belongs to the Sobolev space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline9.png\" /> <jats:tex-math> $H^s({\\mathbb {T}}^u\\times {\\mathbb {R}}^d)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. When <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline10.png\" /> <jats:tex-math> $s&gt; {u}/{2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, it is also valid that the density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline11.png\" /> <jats:tex-math> $h_T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is differentiable with respect to <jats:italic>T</jats:italic>. Similar results are proved for thermodynamical quantities for potentials close to the geometric potential.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity and linear response formula of the SRB measures for solenoidal attractors\",\"authors\":\"CARLOS BOCKER, RICARDO BORTOLOTTI, ARMANDO CASTRO\",\"doi\":\"10.1017/etds.2023.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a class of higher-dimensional hyperbolic endomorphisms admit absolutely continuous invariant probabilities whose densities are regular and vary differentiably with respect to the dynamical system. The maps we consider are skew-products given by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001219_inline1.png\\\" /> <jats:tex-math> $T(x,y) = (E (x), C(x,y))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>E</jats:italic> is an expanding map of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001219_inline2.png\\\" /> <jats:tex-math> $\\\\mathbb {T}^u$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>C</jats:italic> is a contracting map on each fiber. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001219_inline3.png\\\" /> <jats:tex-math> $\\\\inf |\\\\!\\\\det DT| \\\\inf \\\\| (D_yC)^{-1}\\\\| ^{-2s}&gt;1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001219_inline4.png\\\" /> <jats:tex-math> ${s&lt;r-(({u+d})/{2}+1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001219_inline5.png\\\" /> <jats:tex-math> $r \\\\geq 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:italic>T</jats:italic> satisfies a transversality condition between overlaps of iterates of <jats:italic>T</jats:italic> (a condition which we prove to be <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001219_inline6.png\\\" /> <jats:tex-math> $C^r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generic under mild assumptions), then the SRB measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001219_inline7.png\\\" /> <jats:tex-math> $\\\\mu _T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>T</jats:italic> is absolutely continuous and its density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001219_inline8.png\\\" /> <jats:tex-math> $h_T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> belongs to the Sobolev space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001219_inline9.png\\\" /> <jats:tex-math> $H^s({\\\\mathbb {T}}^u\\\\times {\\\\mathbb {R}}^d)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. When <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001219_inline10.png\\\" /> <jats:tex-math> $s&gt; {u}/{2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, it is also valid that the density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001219_inline11.png\\\" /> <jats:tex-math> $h_T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is differentiable with respect to <jats:italic>T</jats:italic>. Similar results are proved for thermodynamical quantities for potentials close to the geometric potential.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2023.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一类高维双曲内定形存在绝对连续的不变概率,这些概率的密度是有规律的,并且相对于动力系统是微分变化的。我们考虑的映射是由 $T(x,y) = (E (x), C(x,y))$ 给出的偏积,其中 E 是 $\mathbb {T}^u$ 的扩张映射,C 是每个纤维上的收缩映射。如果 $\inf |\!\det DT| \inf \| (D_yC)^{-1}\| ^{-2s}>1$ for some ${s<;r-(({u+d})/{2}+1)}$,$r \geq 2$,并且 T 满足 T 的迭代重叠之间的横向性条件(在温和的假设条件下,我们证明这个条件是$C^r$ -通用的)、那么 T 的 SRB 度量 $\mu _T$ 是绝对连续的,其密度 $h_T$ 属于 Sobolev 空间 $H^s({\mathbb {T}}^u\times {\mathbb {R}}^d)$ 。当 $s> {u}/{2}$ 时,密度 $h_T$ 相对于 T 是可微分的也是有效的。对于接近几何势的热力学量,也证明了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Regularity and linear response formula of the SRB measures for solenoidal attractors
We show that a class of higher-dimensional hyperbolic endomorphisms admit absolutely continuous invariant probabilities whose densities are regular and vary differentiably with respect to the dynamical system. The maps we consider are skew-products given by $T(x,y) = (E (x), C(x,y))$ , where E is an expanding map of $\mathbb {T}^u$ and C is a contracting map on each fiber. If $\inf |\!\det DT| \inf \| (D_yC)^{-1}\| ^{-2s}>1$ for some ${s<r-(({u+d})/{2}+1)}$ , $r \geq 2$ , and T satisfies a transversality condition between overlaps of iterates of T (a condition which we prove to be $C^r$ -generic under mild assumptions), then the SRB measure $\mu _T$ of T is absolutely continuous and its density $h_T$ belongs to the Sobolev space $H^s({\mathbb {T}}^u\times {\mathbb {R}}^d)$ . When $s> {u}/{2}$ , it is also valid that the density $h_T$ is differentiable with respect to T. Similar results are proved for thermodynamical quantities for potentials close to the geometric potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信