{"title":"Regularity and linear response formula of the SRB measures for solenoidal attractors","authors":"CARLOS BOCKER, RICARDO BORTOLOTTI, ARMANDO CASTRO","doi":"10.1017/etds.2023.121","DOIUrl":null,"url":null,"abstract":"We show that a class of higher-dimensional hyperbolic endomorphisms admit absolutely continuous invariant probabilities whose densities are regular and vary differentiably with respect to the dynamical system. The maps we consider are skew-products given by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline1.png\" /> <jats:tex-math> $T(x,y) = (E (x), C(x,y))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>E</jats:italic> is an expanding map of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline2.png\" /> <jats:tex-math> $\\mathbb {T}^u$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>C</jats:italic> is a contracting map on each fiber. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline3.png\" /> <jats:tex-math> $\\inf |\\!\\det DT| \\inf \\| (D_yC)^{-1}\\| ^{-2s}>1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline4.png\" /> <jats:tex-math> ${s<r-(({u+d})/{2}+1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline5.png\" /> <jats:tex-math> $r \\geq 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:italic>T</jats:italic> satisfies a transversality condition between overlaps of iterates of <jats:italic>T</jats:italic> (a condition which we prove to be <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline6.png\" /> <jats:tex-math> $C^r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generic under mild assumptions), then the SRB measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline7.png\" /> <jats:tex-math> $\\mu _T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>T</jats:italic> is absolutely continuous and its density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline8.png\" /> <jats:tex-math> $h_T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> belongs to the Sobolev space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline9.png\" /> <jats:tex-math> $H^s({\\mathbb {T}}^u\\times {\\mathbb {R}}^d)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. When <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline10.png\" /> <jats:tex-math> $s> {u}/{2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, it is also valid that the density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001219_inline11.png\" /> <jats:tex-math> $h_T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is differentiable with respect to <jats:italic>T</jats:italic>. Similar results are proved for thermodynamical quantities for potentials close to the geometric potential.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2023.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that a class of higher-dimensional hyperbolic endomorphisms admit absolutely continuous invariant probabilities whose densities are regular and vary differentiably with respect to the dynamical system. The maps we consider are skew-products given by $T(x,y) = (E (x), C(x,y))$ , where E is an expanding map of $\mathbb {T}^u$ and C is a contracting map on each fiber. If $\inf |\!\det DT| \inf \| (D_yC)^{-1}\| ^{-2s}>1$ for some ${s<r-(({u+d})/{2}+1)}$ , $r \geq 2$ , and T satisfies a transversality condition between overlaps of iterates of T (a condition which we prove to be $C^r$ -generic under mild assumptions), then the SRB measure $\mu _T$ of T is absolutely continuous and its density $h_T$ belongs to the Sobolev space $H^s({\mathbb {T}}^u\times {\mathbb {R}}^d)$ . When $s> {u}/{2}$ , it is also valid that the density $h_T$ is differentiable with respect to T. Similar results are proved for thermodynamical quantities for potentials close to the geometric potential.