{"title":"Lifting generic points","authors":"TOMASZ DOWNAROWICZ, BENJAMIN WEISS","doi":"10.1017/etds.2023.119","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(X,T)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(Y,S)$</span></span></img></span></span> be two topological dynamical systems, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(X,T)$</span></span></img></span></span> has the weak specification property. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\xi $</span></span></img></span></span> be an invariant measure on the product system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(X\\times Y, T\\times S)$</span></span></img></span></span> with marginals <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></img></span></span> on <span>X</span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\nu $</span></span></img></span></span> on <span>Y</span>, with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></img></span></span> ergodic. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$y\\in Y$</span></span></img></span></span> be quasi-generic for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\nu $</span></span></img></span></span>. Then there exists a point <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$x\\in X$</span></span></img></span></span> generic for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></span></span> such that the pair <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$(x,y)$</span></span></span></span> is quasi-generic for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$\\xi $</span></span></span></span>. This is a generalization of a similar theorem by T. Kamae, in which <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$(X,T)$</span></span></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline16.png\"/><span data-mathjax-type=\"texmath\"><span>$(Y,S)$</span></span></span></span> are full shifts on finite alphabets.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2023.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $(X,T)$ and $(Y,S)$ be two topological dynamical systems, where $(X,T)$ has the weak specification property. Let $\xi $ be an invariant measure on the product system $(X\times Y, T\times S)$ with marginals $\mu $ on X and $\nu $ on Y, with $\mu $ ergodic. Let $y\in Y$ be quasi-generic for $\nu $. Then there exists a point $x\in X$ generic for $\mu $ such that the pair $(x,y)$ is quasi-generic for $\xi $. This is a generalization of a similar theorem by T. Kamae, in which $(X,T)$ and $(Y,S)$ are full shifts on finite alphabets.