{"title":"Dimension estimates and approximation in non-uniformly hyperbolic systems","authors":"JUAN WANG, YONGLUO CAO, YUN ZHAO","doi":"10.1017/etds.2024.3","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline1.png\" /> <jats:tex-math> $f: M\\rightarrow M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline2.png\" /> <jats:tex-math> $C^{1+\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> diffeomorphism on an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline3.png\" /> <jats:tex-math> $m_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional compact smooth Riemannian manifold <jats:italic>M</jats:italic> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline4.png\" /> <jats:tex-math> $\\mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> a hyperbolic ergodic <jats:italic>f</jats:italic>-invariant probability measure. This paper obtains an upper bound for the stable (unstable) pointwise dimension of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline5.png\" /> <jats:tex-math> $\\mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is given by the unique solution of an equation involving the sub-additive measure-theoretic pressure. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline6.png\" /> <jats:tex-math> $\\mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a Sinai–Ruelle–Bowen (SRB) measure, then the Kaplan–Yorke conjecture is true under some additional conditions and the Lyapunov dimension of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline7.png\" /> <jats:tex-math> $\\mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> can be approximated gradually by the Hausdorff dimension of a sequence of hyperbolic sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline8.png\" /> <jats:tex-math> $\\{\\Lambda _n\\}_{n\\geq 1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The limit behaviour of the Carathéodory singular dimension of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline9.png\" /> <jats:tex-math> $\\Lambda _n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on the unstable manifold with respect to the super-additive singular valued potential is also studied.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $f: M\rightarrow M$ be a $C^{1+\alpha }$ diffeomorphism on an $m_0$ -dimensional compact smooth Riemannian manifold M and $\mu $ a hyperbolic ergodic f-invariant probability measure. This paper obtains an upper bound for the stable (unstable) pointwise dimension of $\mu $ , which is given by the unique solution of an equation involving the sub-additive measure-theoretic pressure. If $\mu $ is a Sinai–Ruelle–Bowen (SRB) measure, then the Kaplan–Yorke conjecture is true under some additional conditions and the Lyapunov dimension of $\mu $ can be approximated gradually by the Hausdorff dimension of a sequence of hyperbolic sets $\{\Lambda _n\}_{n\geq 1}$ . The limit behaviour of the Carathéodory singular dimension of $\Lambda _n$ on the unstable manifold with respect to the super-additive singular valued potential is also studied.