拓扑系统的多重性

Pub Date : 2024-02-05 DOI:10.1017/etds.2023.118
DAVID BURGUET, RUXI SHI
{"title":"拓扑系统的多重性","authors":"DAVID BURGUET, RUXI SHI","doi":"10.1017/etds.2023.118","DOIUrl":null,"url":null,"abstract":"<p>We define the topological multiplicity of an invertible topological system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(X,T)$</span></span></img></span></span> as the minimal number <span>k</span> of real continuous functions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$f_1,\\ldots , f_k$</span></span></img></span></span> such that the functions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f_i\\circ T^n$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n\\in {\\mathbb {Z}}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$1\\leq i\\leq k,$</span></span></img></span></span> span a dense linear vector space in the space of real continuous functions on <span>X</span> endowed with the supremum norm. We study some properties of topological systems with finite multiplicity. After giving some examples, we investigate the multiplicity of subshifts with linear growth complexity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity of topological systems\",\"authors\":\"DAVID BURGUET, RUXI SHI\",\"doi\":\"10.1017/etds.2023.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We define the topological multiplicity of an invertible topological system <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(X,T)$</span></span></img></span></span> as the minimal number <span>k</span> of real continuous functions <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f_1,\\\\ldots , f_k$</span></span></img></span></span> such that the functions <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f_i\\\\circ T^n$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n\\\\in {\\\\mathbb {Z}}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203084901549-0722:S0143385723001189:S0143385723001189_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1\\\\leq i\\\\leq k,$</span></span></img></span></span> span a dense linear vector space in the space of real continuous functions on <span>X</span> endowed with the supremum norm. We study some properties of topological systems with finite multiplicity. After giving some examples, we investigate the multiplicity of subshifts with linear growth complexity.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2023.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将可逆拓扑系统 $(X,T)$ 的拓扑多重性定义为实数连续函数 $f_1,\ldots , f_k$ 的最小数目 k,使得函数 $f_i\circ T^n$, $n\in {\mathbb {Z}}$, $1\leq i\leq k,$ 在 X 上的实数连续函数空间中横跨一个簇密的线性向量空间,并赋予上顶规范。我们研究具有有限多重性的拓扑系统的一些性质。在给出一些例子之后,我们研究了具有线性增长复杂性的子转移的多重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multiplicity of topological systems

We define the topological multiplicity of an invertible topological system $(X,T)$ as the minimal number k of real continuous functions $f_1,\ldots , f_k$ such that the functions $f_i\circ T^n$, $n\in {\mathbb {Z}}$, $1\leq i\leq k,$ span a dense linear vector space in the space of real continuous functions on X endowed with the supremum norm. We study some properties of topological systems with finite multiplicity. After giving some examples, we investigate the multiplicity of subshifts with linear growth complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信