随机动力系统的稳定规律

Pub Date : 2024-02-14 DOI:10.1017/etds.2024.5
ROMAIN AIMINO, MATTHEW NICOL, ANDREW TÖRÖK
{"title":"随机动力系统的稳定规律","authors":"ROMAIN AIMINO, MATTHEW NICOL, ANDREW TÖRÖK","doi":"10.1017/etds.2024.5","DOIUrl":null,"url":null,"abstract":"In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline1.png\" /> <jats:tex-math> $[0,1]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline2.png\" /> <jats:tex-math> $\\nu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We consider a class of non-square-integrable observables <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline3.png\" /> <jats:tex-math> $\\phi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mostly of form <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline4.png\" /> <jats:tex-math> $\\phi (x)=d(x,x_0)^{-{1}/{\\alpha }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline5.png\" /> <jats:tex-math> $x_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline6.png\" /> <jats:tex-math> $\\alpha \\in (0,2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The two types of maps we concatenate are a class of piecewise <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline7.png\" /> <jats:tex-math> $C^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline8.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline9.png\" /> <jats:tex-math> $\\nu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable laws for random dynamical systems\",\"authors\":\"ROMAIN AIMINO, MATTHEW NICOL, ANDREW TÖRÖK\",\"doi\":\"10.1017/etds.2024.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline1.png\\\" /> <jats:tex-math> $[0,1]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline2.png\\\" /> <jats:tex-math> $\\\\nu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We consider a class of non-square-integrable observables <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline3.png\\\" /> <jats:tex-math> $\\\\phi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mostly of form <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline4.png\\\" /> <jats:tex-math> $\\\\phi (x)=d(x,x_0)^{-{1}/{\\\\alpha }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline5.png\\\" /> <jats:tex-math> $x_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline6.png\\\" /> <jats:tex-math> $\\\\alpha \\\\in (0,2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The two types of maps we concatenate are a class of piecewise <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline7.png\\\" /> <jats:tex-math> $C^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline8.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline9.png\\\" /> <jats:tex-math> $\\\\nu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑的是以独立且同分布(i.i.d.)的方式连接作用于单位区间 $[0,1]$ 的映射所形成的随机动力系统。作为静态马尔可夫过程,随机动力系统具有唯一的静态度量 $\nu $。我们考虑一类非平方可积分观测值 $\phi $ ,其形式大多为 $\phi (x)=d(x,x_0)^{-{1}/{\alpha }}$ ,其中 $x_0$ 是满足一些其他通用性条件的非周期点(尤其是非周期点),更一般地说,是指数为 $\alpha \in (0,2)$ 的有规律变化的观测值。我们串联的两类映射是一类片状$C^2$膨胀映射和一类在原点处拥有一个无关定点的间歇映射。在动力学和 $\alpha $ 的条件下,我们建立了泊松极限定律、缩放伯克霍夫和对稳定极限定律的收敛,以及退火和淬火情况下的函数稳定极限定律。几乎所有淬火实现的极限规律的缩放常数都与退火情况下的相同,并由 $\nu $ 决定。这与淬火中心极限定理中的标度形成了鲜明对比,在淬火中心极限定理中,中心常数以一种关键的方式依赖于实现,并且几乎对每一种实现都不相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stable laws for random dynamical systems
In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval $[0,1]$ in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure $\nu $ . We consider a class of non-square-integrable observables $\phi $ , mostly of form $\phi (x)=d(x,x_0)^{-{1}/{\alpha }}$ , where $x_0$ is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index $\alpha \in (0,2)$ . The two types of maps we concatenate are a class of piecewise $C^2$ expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and $\alpha $ , we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by $\nu $ . This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信