提升通用点

IF 0.8 3区 数学 Q2 MATHEMATICS
TOMASZ DOWNAROWICZ, BENJAMIN WEISS
{"title":"提升通用点","authors":"TOMASZ DOWNAROWICZ, BENJAMIN WEISS","doi":"10.1017/etds.2023.119","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(X,T)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(Y,S)$</span></span></img></span></span> be two topological dynamical systems, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(X,T)$</span></span></img></span></span> has the weak specification property. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\xi $</span></span></img></span></span> be an invariant measure on the product system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(X\\times Y, T\\times S)$</span></span></img></span></span> with marginals <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></img></span></span> on <span>X</span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\nu $</span></span></img></span></span> on <span>Y</span>, with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></img></span></span> ergodic. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$y\\in Y$</span></span></img></span></span> be quasi-generic for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\nu $</span></span></img></span></span>. Then there exists a point <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$x\\in X$</span></span></img></span></span> generic for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></span></span> such that the pair <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$(x,y)$</span></span></span></span> is quasi-generic for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$\\xi $</span></span></span></span>. This is a generalization of a similar theorem by T. Kamae, in which <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$(X,T)$</span></span></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline16.png\"/><span data-mathjax-type=\"texmath\"><span>$(Y,S)$</span></span></span></span> are full shifts on finite alphabets.</p>","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"9 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifting generic points\",\"authors\":\"TOMASZ DOWNAROWICZ, BENJAMIN WEISS\",\"doi\":\"10.1017/etds.2023.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(X,T)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(Y,S)$</span></span></img></span></span> be two topological dynamical systems, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(X,T)$</span></span></img></span></span> has the weak specification property. Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\xi $</span></span></img></span></span> be an invariant measure on the product system <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(X\\\\times Y, T\\\\times S)$</span></span></img></span></span> with marginals <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mu $</span></span></img></span></span> on <span>X</span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\nu $</span></span></img></span></span> on <span>Y</span>, with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mu $</span></span></img></span></span> ergodic. Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$y\\\\in Y$</span></span></img></span></span> be quasi-generic for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\nu $</span></span></img></span></span>. Then there exists a point <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$x\\\\in X$</span></span></img></span></span> generic for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mu $</span></span></span></span> such that the pair <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline13.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$(x,y)$</span></span></span></span> is quasi-generic for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline14.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\xi $</span></span></span></span>. This is a generalization of a similar theorem by T. Kamae, in which <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline15.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$(X,T)$</span></span></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203091301543-0170:S0143385723001190:S0143385723001190_inline16.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$(Y,S)$</span></span></span></span> are full shifts on finite alphabets.</p>\",\"PeriodicalId\":50504,\"journal\":{\"name\":\"Ergodic Theory and Dynamical Systems\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergodic Theory and Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.119\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2023.119","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $(X,T)$ 和 $(Y,S)$ 是两个拓扑动力系统,其中 $(X,T)$ 具有弱规范属性。让 $\xi $ 是乘积系统 $(X\times Y, T\times S)$ 上的不变度量,在 X 上有边际值 $\mu $,在 Y 上有边际值 $\nu $,其中 $\mu $ 是遍历的。让 $y\in Y$ 准通用于 $\nu $。那么在X$上存在一个$x/in X$为$\mu$的泛型点,使得一对$(x,y)$为$\xi$的准泛型。这是T. Kamae的一个类似定理的概括,其中$(X,T)$和$(Y,S)$是有限字母表上的全移位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lifting generic points

Let $(X,T)$ and $(Y,S)$ be two topological dynamical systems, where $(X,T)$ has the weak specification property. Let $\xi $ be an invariant measure on the product system $(X\times Y, T\times S)$ with marginals $\mu $ on X and $\nu $ on Y, with $\mu $ ergodic. Let $y\in Y$ be quasi-generic for $\nu $. Then there exists a point $x\in X$ generic for $\mu $ such that the pair $(x,y)$ is quasi-generic for $\xi $. This is a generalization of a similar theorem by T. Kamae, in which $(X,T)$ and $(Y,S)$ are full shifts on finite alphabets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
11.10%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信