International Journal for Numerical Methods in Biomedical Engineering最新文献

筛选
英文 中文
PREPRINT Machine Learning for the Sensitivity Analysis of a Model of the Cellular Uptake of Nanoparticles for the Treatment of Cancer. PREPRINT 用于治疗癌症的纳米粒子细胞吸收模型敏感性分析的机器学习。
IF 2.2 4区 医学
International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-12-01 Epub Date: 2024-10-29 DOI: 10.1002/cnm.3878
Sarah Iaquinta, Shahram Khazaie, Samer Albanna, Sylvain Fréour, Frédéric Jacquemin
{"title":"PREPRINT Machine Learning for the Sensitivity Analysis of a Model of the Cellular Uptake of Nanoparticles for the Treatment of Cancer.","authors":"Sarah Iaquinta, Shahram Khazaie, Samer Albanna, Sylvain Fréour, Frédéric Jacquemin","doi":"10.1002/cnm.3878","DOIUrl":"10.1002/cnm.3878","url":null,"abstract":"<p><p>Experimental studies on the cellular uptake of nanoparticles (NPs), useful for the investigation of NP-based drug delivery systems, are often difficult to interpret due to the large number of parameters that can contribute to the phenomenon. It is therefore of great interest to identify insignificant parameters to reduce the number of variables used for the design of experiments. In this work, a model of the wrapping of elliptical NPs by the cell membrane is used to compare the influence of the aspect ratio of the NP, the membrane tension, the NP-membrane adhesion, and its variation during the interaction with the NP on the equilibrium state of the wrapping process. Several surrogate models, such as Kriging, Polynomial Chaos Expansion (PCE), and artificial neural networks (ANN) have been built and compared to emulate the computationally expensive model. Only the ANN-based model outperformed the other approaches by providing much better predictivity metrics and could therefore be used to compute the sensitivity indices. Our results showed that the NP's aspect ratio, the initial NP-membrane adhesion, the membrane tension, and the delay for the increase of the NP-membrane adhesion after receptor dynamics are the main contributors to the cellular internalization of the NP, while the influence of other parameters is negligible.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3878"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Mastication Analysis-A DEM Based Numerical Approach. 人体咀嚼分析--基于 DEM 的数值方法
IF 2.2 4区 医学
International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-12-01 Epub Date: 2024-10-10 DOI: 10.1002/cnm.3875
Rajat Mishra, Sagar Kumar Deb, Swasti Chakrabarty, Manojit Das, Monalisa Das, Sushanta Kumar Panda, Chandra Shekhar Tiwary, Amit Arora
{"title":"Human Mastication Analysis-A DEM Based Numerical Approach.","authors":"Rajat Mishra, Sagar Kumar Deb, Swasti Chakrabarty, Manojit Das, Monalisa Das, Sushanta Kumar Panda, Chandra Shekhar Tiwary, Amit Arora","doi":"10.1002/cnm.3875","DOIUrl":"10.1002/cnm.3875","url":null,"abstract":"<p><p>Mastication is an essential and preliminary step of the digestion process involving fragmentation and mixing of food. Controlled muscle movement of jaws with teeth executes crushing, leading towards fragmentation of food particles. Understanding various parameters involved with the process is essential to solve any biomedical complication in the area of interest. However, exploring and analyzing such process flow through an experimental route is challenging and inefficient. Computational techniques such as discrete element numerical modeling can effectively address such problems. The current work employs the Discrete Element Method (DEM) as a numerical modeling technique to simulate the human mastication process. Tavares and Ab-T10 breakage models coupled with Gaudin Schumann and Incomplete Beta fragment distribution models have been implemented to analyze the fragmental distribution of food particles. The effect of particle shape (spherical, polyhedron, and faceted cylinder), size (aspect ratio), and orientation (vertical and horizontal) on breakage and fragment distribution is analyzed. To account for the elastic-plastic behavior and moisture content in food particles, modifications has been made in breakage models by incorporating numerical softening factor and adhesion force. The study demonstrates how numerical modeling techniques can be utilized to analyze the mastication process involving multiple process parameters.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3875"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Simulations for Calibration Setup for Dynamic Contrast-Enhanced Ultrasonography Imaging Protocol. 动态对比增强超声成像协议校准设置的数值模拟。
IF 2.2 4区 医学
International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-12-01 Epub Date: 2024-11-09 DOI: 10.1002/cnm.3885
Abderahmane Marouf, Ahmed G Rahma, Isaline Hoferer, Charly Girot, Stephanie Pitre-Champagnat, Yannick Hoarau
{"title":"Numerical Simulations for Calibration Setup for Dynamic Contrast-Enhanced Ultrasonography Imaging Protocol.","authors":"Abderahmane Marouf, Ahmed G Rahma, Isaline Hoferer, Charly Girot, Stephanie Pitre-Champagnat, Yannick Hoarau","doi":"10.1002/cnm.3885","DOIUrl":"10.1002/cnm.3885","url":null,"abstract":"<p><p>This study presents an investigation of an innovative microfluidic flow separator using both numerical and experimental approaches to calibrate contrast-enhanced ultrasound scanners. Numerical simulations were conducted using Lagrangian particles tracking and passive scalar transport methodologies using the OpenFOAM software. The experimental validation confirmed the accuracy of the numerical simulations, particularly at an imposed total pressure of <math> <semantics><mrow><mn>0.7</mn> <mspace></mspace> <msub><mi>P</mi> <mn>0</mn></msub> </mrow> </semantics> </math> , showing an excellent agreement in particle distributions. The study emphasizes the computational efficiency and modeling of passive scalar transport, providing valuable understanding into the behavior of scalar quantities in microfluidic systems. An optimized diffusion coefficient value of <math> <semantics> <mrow><msup><mn>10</mn> <mrow><mo>-</mo> <mn>7</mn></mrow> </msup> <mspace></mspace> <msup><mi>m</mi> <mn>2</mn></msup> <mspace></mspace> <msup><mi>s</mi> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> </semantics> </math> was identified, showing its critical role in achieving accurate simulation results and optimizing the performance of microfluidic flow separators for contrast-enhanced ultrasound scanner calibration.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3885"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of asymptomatic intervertebral flexion patterns on lumbar disc pressure: A finite element analysis study 无症状椎间屈曲模式对腰椎间盘压力的影响:有限元分析研究
IF 2.2 4区 医学
International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-10-08 DOI: 10.1002/cnm.3866
Mehdi Nematimoez, Ram Haddas, Alexander Breen
{"title":"Effect of asymptomatic intervertebral flexion patterns on lumbar disc pressure: A finite element analysis study","authors":"Mehdi Nematimoez,&nbsp;Ram Haddas,&nbsp;Alexander Breen","doi":"10.1002/cnm.3866","DOIUrl":"10.1002/cnm.3866","url":null,"abstract":"<p>Movement patterns may be a factor for manipulating the lumbar load, although little information is yet available in the literature about the relationship between this variable and intervertebral disc pressure (IDP). A finite element model of the lumbar spine (49-year-old asymptomatic female) was used to simulate intervertebral movements (L2–L5) of 127 asymptomatic participants. The data from participants that at least completed a simulation of lumbar vertebral movement during the first 53% of a movement cycle (flexion phase) were used for further analyses. Then, for each vertebral angular motion curve with constant spatial peaks, different temporal patterns were simulated in two stages: (1) in lumbar pattern exchange (LPE), each vertebral angle was simulated by the corresponding vertebrae of other participants data; (2) in vertebral pattern exchange (VPE), vertebral angles were simulated by each other. The <i>k</i>-mean algorithm was used to cluster two groups of variables; peak and cumulative IDP, in both stages of simulations (i.e., LPE and VPE). In the second stage of the simulation (VPE), Kendall's tau was utilized to consider the relationship between different temporal patterns and IDPs for each individual lumbar level. Cluster analyses showed that the temporal movement pattern did not exhibit any effect on the peak IDP while the cumulative IDP changed significantly for some patterns. Earlier involvement in lumbar motion at any level led to higher IDP in the majority of simulations. There is therefore a possibility of manipulating lumbar IDP by changing the temporal pattern with the same ROM, in which optimal distribution of the loads among lumbar levels may be applied as preventive or treatment interventions. Evaluating load benefits, such as load, on biomechanically relevant lumbar levels, dynamically measured by quantitative fluoroscopy, may help inform interventional exercises.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 11","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cluster-based incremental potential approach for reduced order homogenization of bones 基于集群的增量势能法,用于骨骼的降阶均质化。
IF 2.2 4区 医学
International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-10-07 DOI: 10.1002/cnm.3872
Xiaozhe Ju, Chunli Xu, Yangjian Xu, Lihua Liang, Junbo Liang, Weiming Tao
{"title":"A cluster-based incremental potential approach for reduced order homogenization of bones","authors":"Xiaozhe Ju,&nbsp;Chunli Xu,&nbsp;Yangjian Xu,&nbsp;Lihua Liang,&nbsp;Junbo Liang,&nbsp;Weiming Tao","doi":"10.1002/cnm.3872","DOIUrl":"10.1002/cnm.3872","url":null,"abstract":"<p>We develop a cluster-based model order reduction (called C-pRBMOR) approach for efficient homogenization of bones, compatible with a large variety of generalized standard material (GSM) models. To this end, the pRBMOR approach based on a mixed incremental potential formulation is extended to a clustered version for a significantly improved computational efficiency. The microscopic modeling of bones falls into a mixed incremental class of the GSM framework, originating from two potentials. An offline phase of the C-pRBMOR approach includes both a clustering analysis spatially decomposing the micro-domain within an RVE and a space–time decomposition of the microscopic plastic strain fields. A comparative study on two different clustering approaches and two algorithms for mode identification is additionally conducted. For an online analysis, a cluster-enhanced version of evolution equations for the reduced variables is derived from an effective incremental variational formulation, rendering a very small set of nonlinear equations to be numerically solved. Several numerical examples show the effectiveness of the C-pRBMOR approach. A striking acceleration rate beyond 10<sup>4</sup> against conventional FE computations and that beyond 10<sup>3</sup> against the original pRBMOR approach are observed.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 11","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of post-operation loading and fixation implant on the healing process of fractured tibia 手术后加载和固定植入物对胫骨骨折愈合过程的影响。
IF 2.2 4区 医学
International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-09-25 DOI: 10.1002/cnm.3870
Shima Doorandish Yazdi, Dorna Hedayat, Amir Asadi, Ali Abouei Mehrizi
{"title":"Impacts of post-operation loading and fixation implant on the healing process of fractured tibia","authors":"Shima Doorandish Yazdi,&nbsp;Dorna Hedayat,&nbsp;Amir Asadi,&nbsp;Ali Abouei Mehrizi","doi":"10.1002/cnm.3870","DOIUrl":"10.1002/cnm.3870","url":null,"abstract":"<p>Healing of tibia demonstrates a complex mechanobiological process as it is stimulated by the major factor of strains applied by body weight. The effect of screw heads and bodies as well as their pressure distribution is often overlooked. Hence, effective mechanical conditions of the healing process of tibia can be categorized into the material of the plate and screws, post-operation loadings, and screw type and pressure. In this paper, a mathematical biodegradation model was used to simulate the PGF/PLA plate-screw device over 8 weeks. The effect of different post-operation loading patterns was studied for both locking and non-locking screws. The aim was to reach the best configuration for the most achievable healing using FEA by computing the healing pattern, trend, and efficiency with the mechano-regulation theory based on deviatoric strain. The biodegradation process of the plate and screws resulted in 82% molecular weight loss and 1.05 GPa decrease in Young's modulus during 8 weeks. The healing efficiency of the cases ranged from 4.72% to 14.75% in the first week and 18.64% to 63.05% in the eighth week. Finally, an optimal case was achieved by considering the prevention of muscle erosion, bone density reduction, and nonunion, according to the obtained results.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 11","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of electromagnetic middle-ear implant simulating sites on the stapes spatial motion: A finite element analysis 电磁中耳植入物模拟点对镫骨空间运动的影响:有限元分析
IF 2.2 4区 医学
International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-09-19 DOI: 10.1002/cnm.3871
Yixiang Zhang, Houguang Liu, Lei Zhou, Jianhua Yang, Wen Liu, Shanguo Yang, Xinsheng Huang
{"title":"Effect of electromagnetic middle-ear implant simulating sites on the stapes spatial motion: A finite element analysis","authors":"Yixiang Zhang,&nbsp;Houguang Liu,&nbsp;Lei Zhou,&nbsp;Jianhua Yang,&nbsp;Wen Liu,&nbsp;Shanguo Yang,&nbsp;Xinsheng Huang","doi":"10.1002/cnm.3871","DOIUrl":"10.1002/cnm.3871","url":null,"abstract":"<p>The electromagnetic middle-ear implant (MEI) is a new type of hearing device for addressing sensorineural and mixed hearing loss. The hearing compensation effect of the MEI varies depending on the transducer stimulation sites. This paper investigates the impact of transducer stimulation sites on MEI performance by analyzing stapes spatial motion. Firstly, we constructed a human-ear finite element model based on micro-CT scanning and inverse molding techniques. This model was validated by comparing its predictions of stapes spatial motion and cochlear response with experimental data. Then, stimulation force was applied at four common sites: umbo, incus body, incus long process and stapes to simulate the electromagnetic transducer. Results show that at low and middle frequencies, stapes-stimulating and incus-long-process-stimulating produce similar spatial motion to normal hearing; at high frequencies, incus-body-stimulating produces similar results to normal hearing. The equivalent sound pressure level generated by the stapes piston motion is less sensitive to the stimulation direction than that deduced by the stapes rocking motion.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 11","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive integration of history variables in constrained mixture models for organ-scale growth and remodeling 在器官尺度生长和重塑的约束混合物模型中对历史变量进行自适应整合。
IF 2.2 4区 医学
International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-09-19 DOI: 10.1002/cnm.3869
Amadeus M. Gebauer, Martin R. Pfaller, Jason M. Szafron, Wolfgang A. Wall
{"title":"Adaptive integration of history variables in constrained mixture models for organ-scale growth and remodeling","authors":"Amadeus M. Gebauer,&nbsp;Martin R. Pfaller,&nbsp;Jason M. Szafron,&nbsp;Wolfgang A. Wall","doi":"10.1002/cnm.3869","DOIUrl":"10.1002/cnm.3869","url":null,"abstract":"<p>In the last decades, many computational models have been developed to predict soft tissue growth and remodeling (G&amp;R). The constrained mixture theory describes fundamental mechanobiological processes in soft tissue G&amp;R and has been widely adopted in cardiovascular models of G&amp;R. However, even after two decades of work, large organ-scale models are rare, mainly due to high computational costs (model evaluation and memory consumption), especially in long-range simulations. We propose two strategies to adaptively integrate history variables in constrained mixture models to enable large organ-scale simulations of G&amp;R. Both strategies exploit that the influence of deposited tissue on the current mixture decreases over time through degradation. One strategy is independent of external loading, allowing the estimation of the computational resources ahead of the simulation. The other adapts the history snapshots based on the local mechanobiological environment so that the additional integration errors can be controlled and kept negligibly small, even in G&amp;R scenarios with severe perturbations. We analyze the adaptively integrated constrained mixture model on a tissue patch for a parameter study and show the performance under different G&amp;R scenarios. To confirm that adaptive strategies enable large organ-scale examples, we show simulations of different hypertension conditions with a real-world example of a biventricular heart discretized with a finite element mesh. In our example, adaptive integrations sped up simulations by a factor of three and reduced memory requirements to one-sixth. The reduction of the computational costs gets even more pronounced for simulations over longer periods. Adaptive integration of the history variables allows studying more finely resolved models and longer G&amp;R periods while computational costs are drastically reduced and largely constant in time.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 11","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3869","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball 针对人眼球内部复杂传热模拟的模型阶数缩减和敏感性分析。
IF 2.2 4区 医学
International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-09-09 DOI: 10.1002/cnm.3864
Thomas Saigre, Christophe Prud'homme, Marcela Szopos
{"title":"Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball","authors":"Thomas Saigre,&nbsp;Christophe Prud'homme,&nbsp;Marcela Szopos","doi":"10.1002/cnm.3864","DOIUrl":"10.1002/cnm.3864","url":null,"abstract":"<p>Heat transfer in the human eyeball, a complex organ, is significantly influenced by various pathophysiological and external parameters. Particularly, heat transfer critically affects fluid behavior within the eye and ocular drug delivery processes. Overcoming the challenges of experimental analysis, this study introduces a comprehensive three-dimensional mathematical and computational model to simulate the heat transfer in a realistic geometry. Our work includes an extensive sensitivity analysis to address uncertainties and delineate the impact of different variables on heat distribution in ocular tissues. To manage the model's complexity, we employed a very fast model reduction technique with certified sharp error bounds, ensuring computational efficiency without compromising accuracy. Our results demonstrate remarkable consistency with experimental observations and align closely with existing numerical findings in the literature. Crucially, our findings underscore the significant role of blood flow and environmental conditions, particularly in the eye's internal tissues. Clinically, this model offers a promising tool for examining the temperature-related effects of various therapeutic interventions on the eye. Such insights are invaluable for optimizing treatment strategies in ophthalmology.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 11","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3864","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomechanical design of a new proximal humerus fracture plate using alternative materials 使用替代材料对新型肱骨近端骨折钢板进行生物力学设计。
IF 2.2 4区 医学
International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-09-07 DOI: 10.1002/cnm.3868
Sabrina Islam, Mitchell Dembowski, Emil H. Schemitsch, Habiba Bougherara, Z. Shaghayegh Bagheri, Radovan Zdero
{"title":"Biomechanical design of a new proximal humerus fracture plate using alternative materials","authors":"Sabrina Islam,&nbsp;Mitchell Dembowski,&nbsp;Emil H. Schemitsch,&nbsp;Habiba Bougherara,&nbsp;Z. Shaghayegh Bagheri,&nbsp;Radovan Zdero","doi":"10.1002/cnm.3868","DOIUrl":"10.1002/cnm.3868","url":null,"abstract":"<p>Comminuted proximal humerus fractures are often repaired by metal plates, but potentially still experience bone refracture, bone “stress shielding,” screw perforation, delayed healing, and so forth. This “proof of principle” investigation is the initial step towards the design of a new plate using alternative materials to address some of these problems. Finite element modeling was used to create design graphs for bone stress, plate stress, screw stress, and interfragmentary motion via three different fixations (no, 1, or 2 “kickstand” [KS] screws across the fracture) using a wide range of plate elastic moduli (<i>E</i><sub>P</sub> = 5–200 GPa). Well-known design optimization criteria were used that could minimize bone, plate, and screw failure (i.e., peak stress &lt; ultimate tensile strength), reduce bone “stress shielding” (i.e., bone stress under the new plate ≥ bone stress for an intact humerus, titanium plate, and/or steel plate “control”), and encourage callus growth leading to early healing (i.e., 0.2 mm ≤ axial interfragmentary motion ≤ 1 mm; shear/axial interfragmentary motion ratio &lt;1.6). The findings suggest that a potentially optimal configuration involves the new plate being manufactured from a material with an <i>E</i><sub>P</sub> of 5–41.5 GPa with 1 KS screw; but, using no KS screws would cause immediate bone fracture and 2 KS screws would almost certainly lead to delayed healing. A prototype plate might be fabricated using alternative materials suggested for orthopedics and other industries, like fiber-metal laminates, fiber-reinforced polymers, metal foams, pure polymers, shape memory alloys, or 3D-printed porous metals.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 11","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信