{"title":"Biomechanics of the Human Knee Joint in Maximum Voluntary Isometric Flexion: Study of Changes in Applied Moment, Agonist-Antagonist Participations, Joint Center, and Flexion Angle.","authors":"Pooya Salehi, Aboulfazl Shirazi-Adl, Farshid Ghezelbash","doi":"10.1002/cnm.3874","DOIUrl":"10.1002/cnm.3874","url":null,"abstract":"<p><p>Estimation of the knee joint strength by maximum voluntary isometric contraction (MVIC) is a common practice to assess strength, coordination, safety to return to work or engage in sports after an injury, and to evaluate the efficacy of treatment modalities and rehabilitation strategies. In this study, we utilize a previously validated coupled finite element-musculoskeletal model of the lower extremity to explore the sensitivity of output measures (posterior cruciate ligament [PCL]/muscle/contact forces and passive moments) in knee MVIC flexion exercises at seated position. To do so, at three knee flexion angles (KFA), input measures (resistance moment and contribution moments of quadriceps and gastrocnemii) were varied at four levels each using the Taguchi design of experiment. Our findings reveal significant increases in PCL forces with KFA (p < 0.01), net MVIC moment (p < 0.01), and resistance moment of quadriceps (p < 0.01). In contrast, they drop at larger activity in gastrocnemii (p < 0.01). Tibiofemoral (TF) contact forces increase with the net MVIC moment (p < 0.01). The passive knee flexion moment, while highly dependent on the location at which computed, also increases with the net MVIC moment (p < 0.01). Changes in KFA, MVIC moment, and proportions thereof carried by quadriceps and/or gastrocnemii substantially affect biomechanics of the joint. Compared with level walking and stair ascent, slightly larger contact forces/stresses and much greater PCL forces are computed. This study improves our understanding of the knee joint behavior during MVIC in effective evaluation and rehabilitation interventions. Besides, it emphasizes the importance of positioning the joint center in model studies.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3874"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomechanical significance of intervertebral discs on growthplate stresses in scoliotic trunks following unilateral muscle weakening: A hybrid approach of finite element and musculoskeletal modeling.","authors":"Zeinab Kamal","doi":"10.1002/cnm.3863","DOIUrl":"10.1002/cnm.3863","url":null,"abstract":"<p><p>This study aimed to ascertain the relevance of intervertebral discs (IVD) in the stress distribution on growthplates (GPs) of a trunk model with adolescent idiopathic scoliosis (AIS) following a unilateral weakening of muscles. A thoracolumbar spine finite element (FE) model of a young female healthy and an AIS spine comprising GPs linked to the T12 through sacrum vertebrae. Two scenarios of including (FEI) and excluding (FEE) IVDs were considered. Then, using optimization-driven musculoskeletal models of the AIS and healthy trunks, the FE models were examined under subject-specific muscle forces and gravity loads. Results of this study demonstrate that when IVDs included in the FE model, an increase, ranging from 0.2 to 1.7 MPa, with the highest value occurring at the apex of the AIS model, in the von Mises stresses in the GPs. The ratio of 1.5 was found for the maximum von-Mises stress value on the most tilted GP in the FEI over the FEE model. Unilateral paralysis of muscles caused a reduction of 50% and 63% in the von Mises stress ratio of the concave-over-convex side of the most tilted GP in the FEI and FEE models of the AIS spine with healthy muscles, respectively. The intradiscal pressures, found for FEE and FEI models, assented to recent in-vivo investigations. Nonetheless, employing IVDs in the simulations provides an indispensable tool to anticipate the effects of neuromuscular disorders on GP stresses in an AIS spine and predict deformity progression during growth.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3863"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of Transport and Deposition of Porous Particles in the Respiratory System Using Eulerian-Lagrangian Approach.","authors":"Sajad Eshaghi, Hassan Khaleghi, Reza Maddahian","doi":"10.1002/cnm.3873","DOIUrl":"10.1002/cnm.3873","url":null,"abstract":"<p><p>Deep lung delivery is crucial for respiratory disease treatment. Although nano and submicron particles exhibited a good deposition efficiency in deep regions of the lung, powder nonuniformity and particle agglomeration reduce their efficiency. Inhalation of porous particles (PPs) can overcome the mentioned challenges due to their larger size and low-density. The present study numerically investigates the deposition and penetration efficiency of orally inhaled PPs. A revised drag coefficient was implemented for PP transport. A realistic mouth-throat to the fifth generation of the lung was reconstructed from CT-scan images. A dilute suspension of uniformly distributed particles was considered at three inhalation flow rates (15, 30, and 45 L/min). Governing equations of the flow field and particle transport are solved using an Eulerian-Lagrangian approach. The results demonstrate that inhaling PPs significantly reduces the total and regional deposition of particles. There was also a critical porosity value under moderate and high inhalation flow rates for large PPs. Below this critical value, PP deposition efficiency substantially decreases. Additionally, it was also found that under low inhalation flow rates, the impact of porosity value is negligible. Almost 95% of the PPs penetrate the lower branches. These findings provide particle engineers and pharmaceutics with profound insight into developing novel inhalation techniques and drug delivery methods for deep lung delivery.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3873"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-Time Surgical Planning for Cerebral Aneurysms Treated With Intrasaccular Flow Disruption Devices Based on Fast Virtual Deployment and Discrete Element Method.","authors":"Xinzhuo Li, Jiewen Geng, Yong Feng, Shengzhang Wang, Hongqi Zhang","doi":"10.1002/cnm.3886","DOIUrl":"10.1002/cnm.3886","url":null,"abstract":"<p><p>This study introduces an innovative real-time surgical planning platform optimized for the treatment of arterial aneurysms using intrasaccular flow disruption (IFD) devices. This platform incorporates a cutting-edge fast virtual deployment (FVD) algorithm alongside a discrete element method (DEM) for computational fluid dynamics (CFD) analyses. It facilitates the efficient virtual deployment of IFD devices, minimizing computational overhead while allowing for comprehensive postoperative hemodynamic efficacy assessment. The FVD algorithm employs an adaptive wall adherence and curvature control system, validated through both idealized and patient-specific model simulations. Post-treatment hemodynamic shifts are quantified by discretizing device wire filaments into discrete particles, which are then integrated with blood flow simulations for enhanced realism. The FVD algorithm efficiently executes virtual deployment of IFD devices within seconds, producing DEM-CFD computational models that align closely with bench testing, traditional Finite Element Method (FEM) analyses, and angiographic data. DEM-CFD outcomes link occlusion effectiveness to post-implantation hemodynamic characteristics, influenced by the aneurysm's unique anatomical features and clinical intervention strategies. The proposed platform demonstrates substantial improvement in balancing computational efficiency with analytical precision. It provides a viable and innovative framework for real-time surgical planning, presenting significant implications for clinical application in arterial aneurysm management.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3886"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Investigation of the Blast-Induced Injuries Using an Open-Source Detailed Human Model.","authors":"Alberto Morena, Lorenzo Peroni, Martina Scapin","doi":"10.1002/cnm.3879","DOIUrl":"10.1002/cnm.3879","url":null,"abstract":"<p><p>Blasts are a threat both in military and civil contexts due not only to explosive devices but also to gas leakages or other accidents. Numerical models could aid to plan response strategies in the short and long term. Nevertheless, due to modeling complexities, a standardized computational framework has not been established yet. In this challenging context, the present study assesses the prediction of blast-induced traumas by using the total human model for safety (THUMS) human model, which has never been attempted before to the authors knowledge. The pedestrian model is publicly available, hence the demonstration of its suitability to predict blast injuries could benefit the establishment of a common modeling framework. Therefore, the THUMS human model was exposed to different blast scenarios both in free field and partially confined spaces and the response of vital organs was investigated. Trauma patterns to internal organs of the THUMS were consistent with available experimental data and injury thresholds. In conclusion, THUMS open-source human model demonstrated its validity to reproduce primary blast-related injuries, addressing the development of standardization of numerical simulations of human response to explosions.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3879"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bettine G van Willigen, M Beatrijs van der Hout-van der Jagt, Peter H M Bovendeerd, Wouter Huberts, Frans N van de Vosse
{"title":"A Multiscale Mathematical Model for the Fetal Blood Circulation of the Second Half of Pregnancy.","authors":"Bettine G van Willigen, M Beatrijs van der Hout-van der Jagt, Peter H M Bovendeerd, Wouter Huberts, Frans N van de Vosse","doi":"10.1002/cnm.3877","DOIUrl":"10.1002/cnm.3877","url":null,"abstract":"<p><p>Doppler ultrasound is a commonly used method to assess hemodynamics of the fetal cardiovascular system and to monitor the well-being of the fetus. Indices based on the velocity profile are often used for diagnosis. However, precisely linking these indices to specific underlying physiology factors is challenging. Several influences, including wave reflections, fetal growth, vessel stiffness, and resistance distal to the vessel, contribute to these indices. Understanding these data is essential for making informed clinical decisions. Mathematical models can be used to investigate the relation between velocity profiles and physiological properties. This study presents a mathematical model designed to simulate velocity wave propagation throughout the fetal cardiovascular system, facilitating the assessment of factors influencing velocity-based indices. The model combines a one-fiber model of the heart with a 1D wave propagation model describing the larger vessels of the circulatory system and a lumped parameter model for the microcirculation. Fetal growth from 20 to 40 weeks of gestational age is incorporated by adjusting cardiac and circulatory parameter settings according to scaling laws. The model's results, including cardiac function, cardiac output distribution, and volume distribution, show a good agreement with literature studies for a growing healthy fetus from 20 to 40 weeks. In addition, Doppler indices are simulated in various vessels and agree with literature as well. In conclusion, this study introduces a novel closed-loop 0D-1D mathematical model that has been verified against literature studies. This model offers a valuable platform for analyzing factors influencing velocity-based indices in the fetal cardiovascular system.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3877"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Therapeutic Effect of Targeted Deployment Filling Coils in the Treatment of Intracranial Aneurysms.","authors":"Xiaoyu Ren, Bin Gao, Wangsheng Lu, Guangming Yang, Yunjie Wang, Yin Yin","doi":"10.1002/cnm.3880","DOIUrl":"10.1002/cnm.3880","url":null,"abstract":"<p><p>Endovascular coil embolization is the primary therapeutic modality for intracranial aneurysms. Substantial reports have been found regarding the coil packing density and inflow jet. However, the hemodynamic effect of increasing the rate of tamponade in the inflow jet area within the aneurysm remains unclear. In this study, individualized geometries of six intracranial aneurysms were recruited: all six aneurysms were located in the internal carotid artery. Two groups were created by changing the position and orientation of the microcatheter for the release of the third segment of the filling coil. The finite element method was used to simulate coil deployment. Computational fluid dynamics was used to characterize hemodynamics in post-deployment aneurysms. The parameters evaluated included velocity reduction, wall shear stress (WSS), low WSS (LWSS), relative residence time (RRT), flow kinetic energy in the neck region of the aneurysms, and residual flow volume (RFV) in the aneurysms. At the peak time (t = 0.17 s), the targeted deployment group has similar proportion of LWSS area to conventional deployment groups: targeted 78.13% ± 34.59% versus normal 74.20% ± 36.94% (mean ± SD, p = 0.583). The targeted deployment group has a higher RRT area (targeted 16.84% ± 5.58% vs. normal 6.42% ± 5.67% [mean ± SD, p = 0.009]), smaller flow kinetic energy (targeted 9.43 ± 4.33 vs. normal 16.23 ± 5.92 [mean ± SD, p = 0.047]), and a larger RFV in the aneurysms (targeted 35.97 ± 24.35 mm<sup>3</sup> vs. normal 25.80 ± 18.94 mm<sup>3</sup> [mean ± SD, p = 0.44]). Inflow jets play an important role in the treatment of aneurysms, and deploying filling coils in accordance with inflow jets may result in a better hemodynamic environment.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3880"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of Mechanics-Guided Helmet Pad and Its Protection Performance Against the Blast Shock Waves.","authors":"Zhidong Wang, Shuhuai Duan, Wenhang Liu, Yongtao Lu, Chengwei Wu, Guojun Ma","doi":"10.1002/cnm.3882","DOIUrl":"10.1002/cnm.3882","url":null,"abstract":"<p><p>The blast shock waves generated by the explosion are severe threat to soldiers on the battlefield, while the helmets currently equipped for the soldiers cannot offer sufficient blast protection. Some helmet pads have been developed to improve the protection performance of the combat helmets against shock waves. However, it remains unclear how to design the helmet pads to protect the head more effectively against blast shock waves. This study aims to design a new mechanics-guided helmet pad and evaluate its protection performance by numerical simulations. The design of the new helmet pad is guided by the oblique reflection theory (ORT), and the advanced combat helmet (ACH) pad is applied for comparison. The protection performance of the pads against blast waves from two directions (frontal and lateral) was investigated. The differences in the distributions of overpressure inside the helmet using two types of pads were analyzed, and the intracranial pressure (ICP) of head was compared. The ORT-guided pads can reduce the overpressure inside the helmet, minimizing the possibility of blast-induced traumatic brain injury. Furthermore, the underwash phenomenon can also be controlled when the new pads are applied. The results in this study provide an important theoretical basis and some guidelines on the design of helmet pads for the protection of human brain from blast shock waves.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3882"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaochen Wang, Mergen H Ghayesh, Jiawen Li, Andrei Kotousov, Anthony C Zander, Joseph A Dawson, Peter J Psaltis
{"title":"Impact of Geometric Attributes on Abdominal Aortic Aneurysm Rupture Risk: An In Vivo FSI-Based Study.","authors":"Xiaochen Wang, Mergen H Ghayesh, Jiawen Li, Andrei Kotousov, Anthony C Zander, Joseph A Dawson, Peter J Psaltis","doi":"10.1002/cnm.3884","DOIUrl":"10.1002/cnm.3884","url":null,"abstract":"<p><p>Reported in this paper is a cutting-edge computational investigation into the influence of geometric characteristics on abdominal aortic aneurysm (AAA) rupture risk, beyond the traditional measure of maximum aneurysm diameter. A Comprehensive fluid-structure interaction (FSI) analysis was employed to assess risk factors in a range of patient scenarios, with the use of three-dimensional (3D) AAA models reconstructed from patient-specific aortic data and finite element method. Wall shear stress (WSS), and its derivatives such as time-averaged WSS (TAWSS), oscillatory shear index (OSI), relative residence time (RRT) and transverse WSS (transWSS) offer insights into the force dynamics acting on the AAA wall. Emphasis is placed on these WSS-based metrics and seven key geometric indices. By correlating these geometric discrepancies with biomechanical phenomena, this study highlights the novel and profound impact of geometry on risk prediction. This study demonstrates the necessity of a multidimensional assessment approach, future efforts should complement these findings with experimental validations for an applicable approach for clinical use.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3884"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan R Cebral, Fernando Mut, Rainald Löhner, Laurel Marsh, Alireza Chitsaz, Cem Bilgin, Esref Bayraktar, David Kallmes, Ramanathan Kadirvel
{"title":"Modeling Fibrin Accumulation on Flow-Diverting Devices for Intracranial Aneurysms.","authors":"Juan R Cebral, Fernando Mut, Rainald Löhner, Laurel Marsh, Alireza Chitsaz, Cem Bilgin, Esref Bayraktar, David Kallmes, Ramanathan Kadirvel","doi":"10.1002/cnm.3883","DOIUrl":"10.1002/cnm.3883","url":null,"abstract":"<p><p>The mechanisms leading to aneurysm occlusion after treatment with flow-diverting devices are not fully understood. Flow modification induces thrombus formation within the aneurysm cavity, but fibrin can simultaneously accumulate and cover the device scaffold, leading to further flow modification. However, the interplay and relative importance of these processes are not clearly understood. A computational model of fibrin accumulation and flow modification after flow diversion treatment of cerebral aneurysms has been developed under the guidance of in vitro experiments and observations. The model is based on the loose coupling of flow and transport-reaction equations that are solved separately by independent codes. Interaction or reactive terms account for thrombin production from prothrombin stimulated by thrombogenic metallic wires and inhibition by antithrombin as well as fibrin production from fibrinogen stimulated by thrombin and flow shear stress, and fibrin adhesion to device wires and already attached fibrin. The computational model was demonstrated and tested on idealized vessel and aneurysm geometries. The model was able to reproduce the salient features of fibrin accumulation after the deployment of flow-diverting devices in idealized in vitro models of cerebral aneurysms. Namely, fibrin production in regions of high shear stress, initial accumulation at the inflow zone, and progressive occlusion of the device and corresponding flow attenuation. The computational model linking flow dynamics to fibrin production, transport, and adhesion can be used to investigate and better understand the effects that lead to fibrin accumulation and the resulting aneurysm inflow reduction and intra-aneurysmal flow modulation.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3883"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}