人眼微创青光眼手术程序。流体-结构相互作用研究

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Elena Redaelli, Letizia Maria Perri, Begoña Calvo, Jorge Grasa, Giulia Luraghi
{"title":"人眼微创青光眼手术程序。流体-结构相互作用研究","authors":"Elena Redaelli,&nbsp;Letizia Maria Perri,&nbsp;Begoña Calvo,&nbsp;Jorge Grasa,&nbsp;Giulia Luraghi","doi":"10.1002/cnm.70062","DOIUrl":null,"url":null,"abstract":"<p>Aqueous humor is a clear fluid pressurized at an intraocular pressure (IOP) within a range of 8–20 mmHg in healthy conditions that fills and shapes the anterior and posterior chambers of the eye. It is typically drained through the trabecular meshwork, but reduced permeability of this structure can lead to impaired drainage, elevated IOP, and the development of glaucoma. Minimally invasive glaucoma surgeries (MIGS) offer a treatment option by implanting micro stents to create alternative pathways for aqueous humor drainage. Despite their potential, limited research has explored the biomechanical changes in ocular tissues and the hydrodynamic interactions following MIGS implantation. This paper aims to study the aqueous humor flow after the surgery by means of computational simulations. For the first time, the implantation process has been simulated to assess residual stresses on ocular structures post-implantation. Then, this study introduces a Fluid–Structure Interaction (FSI) simulation to model the aqueous humor dynamics after MIGS implantation. The results demonstrate the necessity of FSI simulations, as they reveal the interplay between the eye's biomechanical properties and the aqueous humor dynamics. The advantage of using an FSI simulation is its ability to capture the aqueous humor dynamics, providing a more realistic representation compared to the Computational Fluid Dynamic (CFD) simulations found in the literature. Using only CFD, the outflow velocity of the aqueous humor through the stent is approximately 1e−4 m/s, whereas with an FSI approach, the velocity reaches up to 0.8 m/s as the deformation of the ocular tissues has a substantial impact on the flow dynamics and cannot be neglected. This novel methodology can be potentially used for visualizing and quantifying the aqueous humor flow as a function of implant design, position and dimensions in order to design next-generation MIGS devices and optimize implantation strategies, offering significant advancements in glaucoma treatment.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 7","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70062","citationCount":"0","resultStr":"{\"title\":\"Minimally Invasive Glaucoma Surgery Procedure in the Human Eye. A Fluid Structure Interaction Study\",\"authors\":\"Elena Redaelli,&nbsp;Letizia Maria Perri,&nbsp;Begoña Calvo,&nbsp;Jorge Grasa,&nbsp;Giulia Luraghi\",\"doi\":\"10.1002/cnm.70062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aqueous humor is a clear fluid pressurized at an intraocular pressure (IOP) within a range of 8–20 mmHg in healthy conditions that fills and shapes the anterior and posterior chambers of the eye. It is typically drained through the trabecular meshwork, but reduced permeability of this structure can lead to impaired drainage, elevated IOP, and the development of glaucoma. Minimally invasive glaucoma surgeries (MIGS) offer a treatment option by implanting micro stents to create alternative pathways for aqueous humor drainage. Despite their potential, limited research has explored the biomechanical changes in ocular tissues and the hydrodynamic interactions following MIGS implantation. This paper aims to study the aqueous humor flow after the surgery by means of computational simulations. For the first time, the implantation process has been simulated to assess residual stresses on ocular structures post-implantation. Then, this study introduces a Fluid–Structure Interaction (FSI) simulation to model the aqueous humor dynamics after MIGS implantation. The results demonstrate the necessity of FSI simulations, as they reveal the interplay between the eye's biomechanical properties and the aqueous humor dynamics. The advantage of using an FSI simulation is its ability to capture the aqueous humor dynamics, providing a more realistic representation compared to the Computational Fluid Dynamic (CFD) simulations found in the literature. Using only CFD, the outflow velocity of the aqueous humor through the stent is approximately 1e−4 m/s, whereas with an FSI approach, the velocity reaches up to 0.8 m/s as the deformation of the ocular tissues has a substantial impact on the flow dynamics and cannot be neglected. This novel methodology can be potentially used for visualizing and quantifying the aqueous humor flow as a function of implant design, position and dimensions in order to design next-generation MIGS devices and optimize implantation strategies, offering significant advancements in glaucoma treatment.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"41 7\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70062\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70062\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70062","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

房水是一种透明的液体,在健康条件下压在8-20 mmHg的眼压范围内,填充并形成眼睛的前房和后房。它通常通过小梁网排出,但该结构的渗透性降低可导致引流受损,IOP升高和青光眼的发展。微创青光眼手术(MIGS)通过植入微型支架为房水引流提供了一种治疗选择。尽管它们具有潜力,但有限的研究探索了MIGS植入后眼部组织的生物力学变化和流体动力学相互作用。本文旨在用计算机模拟的方法研究手术后房水的流动。首次模拟植入过程以评估植入后眼结构的残余应力。然后,本研究引入了流体-结构相互作用(FSI)模拟来模拟MIGS注入后的房水动力学。结果表明FSI模拟的必要性,因为它们揭示了眼睛的生物力学特性和房水动力学之间的相互作用。使用FSI模拟的优势在于它能够捕获房水动力学,与文献中发现的计算流体动力学(CFD)模拟相比,它提供了更真实的表示。仅使用CFD时,房水通过支架的流出速度约为1e - 4 m/s,而使用FSI方法时,由于眼组织的变形对血流动力学有重大影响,其流出速度可达0.8 m/s。这种新颖的方法可以潜在地用于可视化和量化房水流量作为植入物设计,位置和尺寸的功能,以便设计下一代MIGS设备和优化植入策略,为青光眼治疗提供重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Minimally Invasive Glaucoma Surgery Procedure in the Human Eye. A Fluid Structure Interaction Study

Minimally Invasive Glaucoma Surgery Procedure in the Human Eye. A Fluid Structure Interaction Study

Aqueous humor is a clear fluid pressurized at an intraocular pressure (IOP) within a range of 8–20 mmHg in healthy conditions that fills and shapes the anterior and posterior chambers of the eye. It is typically drained through the trabecular meshwork, but reduced permeability of this structure can lead to impaired drainage, elevated IOP, and the development of glaucoma. Minimally invasive glaucoma surgeries (MIGS) offer a treatment option by implanting micro stents to create alternative pathways for aqueous humor drainage. Despite their potential, limited research has explored the biomechanical changes in ocular tissues and the hydrodynamic interactions following MIGS implantation. This paper aims to study the aqueous humor flow after the surgery by means of computational simulations. For the first time, the implantation process has been simulated to assess residual stresses on ocular structures post-implantation. Then, this study introduces a Fluid–Structure Interaction (FSI) simulation to model the aqueous humor dynamics after MIGS implantation. The results demonstrate the necessity of FSI simulations, as they reveal the interplay between the eye's biomechanical properties and the aqueous humor dynamics. The advantage of using an FSI simulation is its ability to capture the aqueous humor dynamics, providing a more realistic representation compared to the Computational Fluid Dynamic (CFD) simulations found in the literature. Using only CFD, the outflow velocity of the aqueous humor through the stent is approximately 1e−4 m/s, whereas with an FSI approach, the velocity reaches up to 0.8 m/s as the deformation of the ocular tissues has a substantial impact on the flow dynamics and cannot be neglected. This novel methodology can be potentially used for visualizing and quantifying the aqueous humor flow as a function of implant design, position and dimensions in order to design next-generation MIGS devices and optimize implantation strategies, offering significant advancements in glaucoma treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信