Effect of Pulsatile Blood Flow Parameters on Membrane Oxygenator Performance: A Cross-Scale Simulation Study

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Yuan Liu, Yuanfei Zhu, Junwen Yu, Shangting Wang, Ming Yang
{"title":"Effect of Pulsatile Blood Flow Parameters on Membrane Oxygenator Performance: A Cross-Scale Simulation Study","authors":"Yuan Liu,&nbsp;Yuanfei Zhu,&nbsp;Junwen Yu,&nbsp;Shangting Wang,&nbsp;Ming Yang","doi":"10.1002/cnm.70076","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Pulsatile blood flow has the potential to improve microcirculation perfusion and increase the oxygen transfer rate of the oxygenator. However, the specific effects of pulsatile blood flow parameters on the oxygen transfer rate remain unclear. A cross-scale simulation model for the oxygenator is established to investigate the relationship between the oxygen transfer rate of the oxygenator and the pulsatile blood flow parameters. This model comprises a macroscopic model for the oxygenator and a microscopic model for the hollow fiber membrane within the oxygenator. The macroscopic model is employed to calculate the oxygen transfer rate of the oxygenator under various pulsatile blood flow parameters, and a back propagation (BP) neural network is trained to extend the calculation result. The microscopic model for the hollow fiber membrane is employed to elucidate the mechanisms responsible for variations in the oxygen transfer rate. The simulation results demonstrate that at a blood flow rate of 1 L/min, the oxygen transfer rate is minimally affected by blood flow pulsation parameters. While under 2 L/min to 5 L/min, compared to steady blood flow, the oxygen transfer rate can be increased by 3% to 6% when pulsatile blood flow with a pulsation frequency below 0.5 Hz and a pulsation amplitude exceeding 80% is used. However, as the pulsatile frequency increases or the amplitude decreases, the oxygen transfer rate may approach or even fall below the levels achieved under steady-state blood flow conditions.</p>\n </div>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 7","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70076","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pulsatile blood flow has the potential to improve microcirculation perfusion and increase the oxygen transfer rate of the oxygenator. However, the specific effects of pulsatile blood flow parameters on the oxygen transfer rate remain unclear. A cross-scale simulation model for the oxygenator is established to investigate the relationship between the oxygen transfer rate of the oxygenator and the pulsatile blood flow parameters. This model comprises a macroscopic model for the oxygenator and a microscopic model for the hollow fiber membrane within the oxygenator. The macroscopic model is employed to calculate the oxygen transfer rate of the oxygenator under various pulsatile blood flow parameters, and a back propagation (BP) neural network is trained to extend the calculation result. The microscopic model for the hollow fiber membrane is employed to elucidate the mechanisms responsible for variations in the oxygen transfer rate. The simulation results demonstrate that at a blood flow rate of 1 L/min, the oxygen transfer rate is minimally affected by blood flow pulsation parameters. While under 2 L/min to 5 L/min, compared to steady blood flow, the oxygen transfer rate can be increased by 3% to 6% when pulsatile blood flow with a pulsation frequency below 0.5 Hz and a pulsation amplitude exceeding 80% is used. However, as the pulsatile frequency increases or the amplitude decreases, the oxygen transfer rate may approach or even fall below the levels achieved under steady-state blood flow conditions.

Abstract Image

脉动血流参数对膜氧合器性能影响的跨尺度模拟研究
搏动血流具有改善微循环灌注和增加氧合器氧传递速率的潜力。然而,脉动血流参数对氧传递速率的具体影响尚不清楚。建立了氧合器的跨尺度模拟模型,研究氧合器的氧传递速率与搏动血流参数的关系。该模型包括充氧器的宏观模型和充氧器内中空纤维膜的微观模型。采用宏观模型计算不同脉动血流参数下氧合器的氧传递速率,并训练BP神经网络对计算结果进行扩展。利用中空纤维膜的微观模型阐明了氧传递速率变化的机理。仿真结果表明,当血流速率为1 L/min时,血流脉动参数对氧传递速率的影响最小。在2 L/min ~ 5 L/min条件下,脉动频率低于0.5 Hz、脉动幅值超过80%的脉动血流,与稳定血流相比,氧传递率可提高3% ~ 6%。然而,随着搏动频率的增加或幅度的减小,氧传递速率可能接近甚至低于稳态血流条件下的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信