Barbara Wirthl, Paolo Decuzzi, Bernhard A. Schrefler, Wolfgang A. Wall
{"title":"Computational Modelling of Cancer Nanomedicine: Integrating Hyperthermia Treatment Into a Multiphase Porous-Media Tumour Model","authors":"Barbara Wirthl, Paolo Decuzzi, Bernhard A. Schrefler, Wolfgang A. Wall","doi":"10.1002/cnm.70074","DOIUrl":null,"url":null,"abstract":"<p>Heat-based cancer treatment, so-called hyperthermia, can be used to destroy tumour cells directly or to make them more susceptible to chemotherapy or radiation therapy. To apply heat locally, iron oxide nanoparticles are injected into the bloodstream and accumulate at the tumour site, where they generate heat when exposed to an alternating magnetic field. However, the temperature must be precisely controlled to achieve therapeutic benefits while avoiding damage to healthy tissue. We therefore present a computational model for nanoparticle-mediated hyperthermia treatment fully integrated into a multiphase porous-media model of the tumour and its microenvironment. We study how the temperature depends on the amount of nanoparticles accumulated in the tumour area and the specific absorption rate of the nanoparticles. Our results show that host tissue surrounding the tumour is also exposed to considerable doses of heat due to the high thermal conductivity of the tissue, which may cause pain or even unnecessary irreversible damage. Further, we include a lumped and a discrete model for the cooling effect of blood perfusion. Using a discrete model of a realistic microvasculature reveals that the small capillaries do not have a significant cooling effect during hyperthermia treatment and that the commonly used lumped model based on Pennes' bioheat equation may overestimate the effect: within the specific conditions analysed, the difference between lumped and discrete approaches is approximatively 0.75°C, which could influence the therapeutic intervention outcome. Such a comprehensive computational model, as presented here, can provide insights into the optimal treatment parameters for nanoparticle-mediated hyperthermia and can be used to design more efficient treatment strategies.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 8","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70074","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heat-based cancer treatment, so-called hyperthermia, can be used to destroy tumour cells directly or to make them more susceptible to chemotherapy or radiation therapy. To apply heat locally, iron oxide nanoparticles are injected into the bloodstream and accumulate at the tumour site, where they generate heat when exposed to an alternating magnetic field. However, the temperature must be precisely controlled to achieve therapeutic benefits while avoiding damage to healthy tissue. We therefore present a computational model for nanoparticle-mediated hyperthermia treatment fully integrated into a multiphase porous-media model of the tumour and its microenvironment. We study how the temperature depends on the amount of nanoparticles accumulated in the tumour area and the specific absorption rate of the nanoparticles. Our results show that host tissue surrounding the tumour is also exposed to considerable doses of heat due to the high thermal conductivity of the tissue, which may cause pain or even unnecessary irreversible damage. Further, we include a lumped and a discrete model for the cooling effect of blood perfusion. Using a discrete model of a realistic microvasculature reveals that the small capillaries do not have a significant cooling effect during hyperthermia treatment and that the commonly used lumped model based on Pennes' bioheat equation may overestimate the effect: within the specific conditions analysed, the difference between lumped and discrete approaches is approximatively 0.75°C, which could influence the therapeutic intervention outcome. Such a comprehensive computational model, as presented here, can provide insights into the optimal treatment parameters for nanoparticle-mediated hyperthermia and can be used to design more efficient treatment strategies.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.