考虑电导率和损伤各向异性的脉冲场消融计算多尺度模型揭示了深部损伤形态

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Quim Castellvi, Antoni Ivorra
{"title":"考虑电导率和损伤各向异性的脉冲场消融计算多尺度模型揭示了深部损伤形态","authors":"Quim Castellvi,&nbsp;Antoni Ivorra","doi":"10.1002/cnm.70077","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Pulsed Field Ablation (PFA) is an electroporation-based treatment modality to perform cardiac tissue ablations. Heart parenchyma is mainly constituted by elongated myocytes organized in fibers. This anisotropic morphology results in a preferential pathway for the electric current to flow along. Assuming conventional PFA modeling approaches in which lesions form where the electric field surpasses a threshold, such conductance anisotropy would result in relatively wide and shallow lesion morphologies when PFA applications are delivered with a focal monopolar catheter. Contrary to that, some recent preclinical data present narrow and deep elongated lesions. This study presents a multiscale simulation approach able to estimate electroporation treatment outcomes when applied in a highly anisotropic tissue such as the myocardium. In this work, a microscopic model was first implemented mimicking the conformation of the cardiac tissue. Longitudinal and transversal electric fields at different frequencies and magnitudes were applied to characterize the expected anisotropic behavior at the tissue level in terms of electric conductivity and expected membrane disruption due to electroporation. Second, the microscopic characterization was integrated into a macroscopic model of a focal ablation catheter in contact with the myocardial tissue to simulate the delivery of monopolar PFA treatments. The microscopic simulations results show that when low electric field magnitudes are applied, the induced membrane disruptions predominantly appear in fibers parallel to the electric field. However, at higher field magnitudes, a demarcated superior sensitivity is observed in perpendicular orientation. The integration of these anisotropic properties into the macroscopic model predicts width/depth ratios of 1.2 compared to the ratios of about 2 predicted with conventional modeling. In this work, the presented multiscale model and approach can predict relatively narrow and deep lesions, as observed preclinically.</p>\n </section>\n </div>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 8","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70077","citationCount":"0","resultStr":"{\"title\":\"Computational Multiscale Modeling of Pulsed Field Ablation Considering Conductivity and Damage Anisotropy Reveals Deep Lesion Morphologies\",\"authors\":\"Quim Castellvi,&nbsp;Antoni Ivorra\",\"doi\":\"10.1002/cnm.70077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Pulsed Field Ablation (PFA) is an electroporation-based treatment modality to perform cardiac tissue ablations. Heart parenchyma is mainly constituted by elongated myocytes organized in fibers. This anisotropic morphology results in a preferential pathway for the electric current to flow along. Assuming conventional PFA modeling approaches in which lesions form where the electric field surpasses a threshold, such conductance anisotropy would result in relatively wide and shallow lesion morphologies when PFA applications are delivered with a focal monopolar catheter. Contrary to that, some recent preclinical data present narrow and deep elongated lesions. This study presents a multiscale simulation approach able to estimate electroporation treatment outcomes when applied in a highly anisotropic tissue such as the myocardium. In this work, a microscopic model was first implemented mimicking the conformation of the cardiac tissue. Longitudinal and transversal electric fields at different frequencies and magnitudes were applied to characterize the expected anisotropic behavior at the tissue level in terms of electric conductivity and expected membrane disruption due to electroporation. Second, the microscopic characterization was integrated into a macroscopic model of a focal ablation catheter in contact with the myocardial tissue to simulate the delivery of monopolar PFA treatments. The microscopic simulations results show that when low electric field magnitudes are applied, the induced membrane disruptions predominantly appear in fibers parallel to the electric field. However, at higher field magnitudes, a demarcated superior sensitivity is observed in perpendicular orientation. The integration of these anisotropic properties into the macroscopic model predicts width/depth ratios of 1.2 compared to the ratios of about 2 predicted with conventional modeling. In this work, the presented multiscale model and approach can predict relatively narrow and deep lesions, as observed preclinically.</p>\\n </section>\\n </div>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"41 8\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70077\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70077\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70077","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

脉冲场消融(PFA)是一种基于电穿孔的心脏组织消融治疗方式。心脏实质主要由细长的肌细胞组成,呈纤维状组织。这种各向异性形态导致了电流流动的优先途径。假设传统的PFA建模方法是在电场超过阈值时形成病变,那么当PFA应用于局灶单极导管时,这种电导各向异性将导致相对较宽和较浅的病变形态。与此相反,最近的一些临床前数据显示狭窄和深度拉长的病变。本研究提出了一种多尺度模拟方法,能够估计电穿孔治疗在高度各向异性组织(如心肌)中的效果。在这项工作中,首先实现了一个微观模型,模拟心脏组织的构象。应用不同频率和大小的纵向和横向电场来表征组织水平上的预期各向异性行为,包括电导率和由于电穿孔导致的预期膜破坏。其次,将微观表征整合到与心肌组织接触的局灶消融导管的宏观模型中,以模拟单极PFA治疗的传递。微观模拟结果表明,当施加低电场强度时,诱导的膜破坏主要出现在平行于电场的纤维中。然而,在较高的场强下,在垂直方向上观察到标定的优越灵敏度。将这些各向异性属性整合到宏观模型中,预测宽度/深度比为1.2,而传统模型预测的比率约为2。在这项工作中,所提出的多尺度模型和方法可以预测相对狭窄和深度的病变,正如临床前观察到的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational Multiscale Modeling of Pulsed Field Ablation Considering Conductivity and Damage Anisotropy Reveals Deep Lesion Morphologies

Computational Multiscale Modeling of Pulsed Field Ablation Considering Conductivity and Damage Anisotropy Reveals Deep Lesion Morphologies

Pulsed Field Ablation (PFA) is an electroporation-based treatment modality to perform cardiac tissue ablations. Heart parenchyma is mainly constituted by elongated myocytes organized in fibers. This anisotropic morphology results in a preferential pathway for the electric current to flow along. Assuming conventional PFA modeling approaches in which lesions form where the electric field surpasses a threshold, such conductance anisotropy would result in relatively wide and shallow lesion morphologies when PFA applications are delivered with a focal monopolar catheter. Contrary to that, some recent preclinical data present narrow and deep elongated lesions. This study presents a multiscale simulation approach able to estimate electroporation treatment outcomes when applied in a highly anisotropic tissue such as the myocardium. In this work, a microscopic model was first implemented mimicking the conformation of the cardiac tissue. Longitudinal and transversal electric fields at different frequencies and magnitudes were applied to characterize the expected anisotropic behavior at the tissue level in terms of electric conductivity and expected membrane disruption due to electroporation. Second, the microscopic characterization was integrated into a macroscopic model of a focal ablation catheter in contact with the myocardial tissue to simulate the delivery of monopolar PFA treatments. The microscopic simulations results show that when low electric field magnitudes are applied, the induced membrane disruptions predominantly appear in fibers parallel to the electric field. However, at higher field magnitudes, a demarcated superior sensitivity is observed in perpendicular orientation. The integration of these anisotropic properties into the macroscopic model predicts width/depth ratios of 1.2 compared to the ratios of about 2 predicted with conventional modeling. In this work, the presented multiscale model and approach can predict relatively narrow and deep lesions, as observed preclinically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信