{"title":"Angled Crested Like Water Waves with Surface Tension II: Zero Surface Tension Limit","authors":"Siddhant Agrawal","doi":"10.1090/memo/1458","DOIUrl":"https://doi.org/10.1090/memo/1458","url":null,"abstract":"This is the second paper in a series of papers analyzing angled crested like water waves with surface tension. We consider the 2D capillary gravity water wave equation and assume that the fluid is inviscid, incompressible, irrotational and the air density is zero. In the first paper cite{Ag19} we constructed a weighted energy which generalizes the energy of Kinsey and Wu cite{KiWu18} to the case of non-zero surface tension, and proved a local wellposedness result. In this paper we prove that under a suitable scaling regime, the zero surface tension limit of these solutions with surface tension are solutions to the gravity water wave equation which includes waves with angled crests.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139395639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hyperbolic Actions and 2nd Bounded Cohomology of Subgroups of 𝖮𝗎𝗍(𝖥_{𝗇})","authors":"M. Handel, L. Mosher","doi":"10.1090/memo/1454","DOIUrl":"https://doi.org/10.1090/memo/1454","url":null,"abstract":"<p>In this two part work we prove that for every finitely generated subgroup <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma greater-than sans-serif upper O sans-serif u sans-serif t left-parenthesis upper F Subscript n Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"sans-serif\">O</mml:mi>\u0000 <mml:mi mathvariant=\"sans-serif\">u</mml:mi>\u0000 <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Gamma >{mathsf {Out}}(F_n)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, either <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\u0000 <mml:semantics>\u0000 <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">Gamma</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is virtually abelian or <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Subscript b Superscript 2 Baseline left-parenthesis normal upper Gamma semicolon double-struck upper R right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msubsup>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mi>b</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msubsup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\u0000 <mml:mo>;</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">H^2_b(Gamma ;{mathbb {R}})</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> contains a vector space embedding of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l Superscript 1\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">ell ^1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. The method uses actions on hyperbolic spaces. In Part I we focus on the case of infinite lamination subgroups <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\u0000 <mml:semantics>\u0000 <mml:mi mathvariant=","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138608466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Generation Problem in Thompson Group 𝐹","authors":"Gili Golan Polak","doi":"10.1090/memo/1451","DOIUrl":"https://doi.org/10.1090/memo/1451","url":null,"abstract":"<p>We show that the generation problem in Thompson’s group <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is decidable, i.e., there is an algorithm which decides if a finite set of elements of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> generates the whole <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. The algorithm makes use of the Stallings <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-core of subgroups of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, which can be defined in an analogous way to the Stallings core of subgroups of a finitely generated free group. Further study of the Stallings <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-core of subgroups of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> provides a solution to another algorithmic problem in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. Namely, given a finitely generated subgroup <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\u0000 <mml:semantics>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of <inline-formul","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138612675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chris Parker, Gerald Pientka, Andreas Seidel, G. Stroth
{"title":"Finite Groups Which are Almost Groups of Lie Type in Characteristic 𝐩","authors":"Chris Parker, Gerald Pientka, Andreas Seidel, G. Stroth","doi":"10.1090/memo/1452","DOIUrl":"https://doi.org/10.1090/memo/1452","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a prime. In this paper we investigate finite <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper K Subscript StartSet 2 comma p EndSet\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">K</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal K_{{2,p}}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-groups <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> which have a subgroup <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H less-than-or-equal-to upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mml:mi>G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">H le G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> such that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K less-than-or-equal-to upper H equals upper N Subscript upper G Baseline left-parenthesis upper K right-parenthesis less-than-or-equal-to upper A u t left-parenthesis upper K right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>N</mml:mi>\u0000 <mml:mi>G</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mml:mi>Aut</mml:mi>\u0000 <mml:mo><!-- --></mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">K le H = N_G(K) le operatorname {Aut}(K)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotatio","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138611071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Total Positivity is a Quantum Phenomenon: The Grassmannian Case","authors":"Stéphane Launois, Tom Lenagan, Brendan Nolan","doi":"10.1090/memo/1448","DOIUrl":"https://doi.org/10.1090/memo/1448","url":null,"abstract":"The main aim of this paper is to establish a deep link between the totally nonnegative grassmannian and the quantum grassmannian. More precisely, under the assumption that the deformation parameter <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is transcendental, we show that “quantum positroids” are completely prime ideals in the quantum grassmannian <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript q Baseline left-parenthesis upper G Subscript m n Baseline left-parenthesis double-struck upper F right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{mathcal O}_q(G_{mn}(mathbb {F}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a consequence, we obtain that torus-invariant prime ideals in the quantum grassmannian are generated by polynormal sequences of quantum Plücker coordinates and give a combinatorial description of these generating sets. We also give a topological description of the poset of torus-invariant prime ideals in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript q Baseline left-parenthesis upper G Subscript m n Baseline left-parenthesis double-struck upper F right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{mathcal O}_q(G_{mn}(mathbb {F}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and prove a version of the orbit method for torus-invariant objects. Finally, ","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136018336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes–Rogers and Thron–Rogers Polynomials, with Coefficientwise Hankel-Total Positivity","authors":"Mathias Pétréolle, Alan D. Sokal, Bao-Xuan Zhu","doi":"10.1090/memo/1450","DOIUrl":"https://doi.org/10.1090/memo/1450","url":null,"abstract":"We define an infinite sequence of generalizations, parametrized by an integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">m ge 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of the Stieltjes–Rogers and Thron–Rogers polynomials; they arise as the power-series expansions of some branched continued fractions, and as the generating polynomials for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Dyck and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Schröder paths with height-dependent weights. We prove that all of these sequences of polynomials are coefficientwise Hankel-totally positive, jointly in all the (infinitely many) indeterminates. We then apply this theory to prove the coefficientwise Hankel-total positivity for combinatorially interesting sequences of polynomials. Enumeration of unlabeled ordered trees and forests gives rise to multivariate Fuss–Narayana polynomials and Fuss–Narayana symmetric functions. Enumeration of increasing (labeled) ordered trees and forests gives rise to multivariate Eulerian polynomials and Eulerian symmetric functions, which include the univariate <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>th-order Eulerian polynomials as specializations. We also find branched continued fractions for ratios of contiguous hypergeometric series <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript r Baseline upper F Subscript s\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> </mml:mrow> <mml:mi>r</mml:mi> </mml:msub> <mml:mspace width=\"negativethinmathspace\" /> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_r ! F_s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for arbitrary <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\"application/x-tex\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-t","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136017696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew Lawrie, Jonas Luhrmann, Sung-Jin Oh, Sohrab Shahshahani
{"title":"Local Smoothing Estimates for Schrödinger Equations on Hyperbolic Space","authors":"Andrew Lawrie, Jonas Luhrmann, Sung-Jin Oh, Sohrab Shahshahani","doi":"10.1090/memo/1447","DOIUrl":"https://doi.org/10.1090/memo/1447","url":null,"abstract":"We establish global-in-time frequency localized local smoothing estimates for Schrödinger equations on hyperbolic space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper H Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">H</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {H}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the presence of symmetric first and zeroth order potentials, which are possibly time-dependent, possibly large, and have sufficiently fast polynomial decay, these estimates are proved up to a localized lower order error. Then in the time-independent case, we show that a spectral condition (namely, absence of threshold resonances) implies the full local smoothing estimates (without any error), after projecting to the continuous spectrum. In the process, as a means to localize in frequency, we develop a general Littlewood–Paley machinery on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper H Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">H</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {H}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> based on the heat flow. Our results and techniques are motivated by applications to the problem of stability of solitary waves to nonlinear Schrödinger-type equations on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper H Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">H</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {H}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Specifically, some of the estimates established in this paper play a crucial role in the authors’ proof of the nonlinear asymptotic stability of harmonic maps under the Schrödinger maps evolution on the hyperbolic plane; see Lawrie, Lührmann, Oh, and Shahshahani, 2023. As a testament of the robustness of approach, which is based on the positive commutator method and a heat flow based Littlewood-Paley theory, we also show that the main results are stable under small time-depen","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136018340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tate Duality In Positive Dimension over Function Fields","authors":"Zev Rosengarten","doi":"10.1090/memo/1444","DOIUrl":"https://doi.org/10.1090/memo/1444","url":null,"abstract":"We extend the classical duality results of Poitou and Tate for finite discrete Galois modules over local and global fields (local duality, nine-term exact sequence, etc.) to all affine commutative group schemes of finite type, building on the recent work of Česnavičius (“Poitou-Tate without restrictions on the order,” 2015) extending these results to all finite commutative group schemes. We concentrate mainly on the more difficult function field setting, giving some remarks about the number field case along the way.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135948777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}