The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Karl-Theodor Sturm
{"title":"The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces","authors":"Karl-Theodor Sturm","doi":"10.1090/memo/1443","DOIUrl":null,"url":null,"abstract":"Equipped with the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 2 comma q\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^{2,q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-distortion distance <inline-formula content-type=\"math/tex\"> <tex-math> \\DD _{2,q}</tex-math></inline-formula>, the space <inline-formula content-type=\"math/tex\"> <tex-math> \\XX _{2q}</tex-math></inline-formula> of all metric measure spaces <inline-formula content-type=\"math/tex\"> <tex-math> (X,\\d ,\\m )</tex-math></inline-formula> is proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on <inline-formula content-type=\"math/tex\"> <tex-math> \\ol \\XX _{2q}</tex-math></inline-formula> are presented.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 78

Abstract

Equipped with the L 2 , q L^{2,q} -distortion distance \DD _{2,q}, the space \XX _{2q} of all metric measure spaces (X,\d ,\m ) is proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on \ol \XX _{2q} are presented.
空间的空间:度量空间空间上的曲率边界和梯度流
利用l2,q L^{2,q} -畸变距离\DD _{2,q},证明了所有度量测量空间(X,\d,\m)的空间\XX _{2q}在Alexandrov意义上具有非负曲率。详细描述了测地线和切线空间。此外,还给出了半凸泛函的类及其在\ol \XX _{2q}上的梯度流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信