无穷维流形的光滑同伦

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hiroshi Kihara
{"title":"无穷维流形的光滑同伦","authors":"Hiroshi Kihara","doi":"10.1090/memo/1436","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we use homotopical algebra (or abstract homotopical methods) to study smooth homotopical problems of infinite-dimensional <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifolds in convenient calculus. More precisely, we discuss the smoothing of maps, sections, principal bundles, and gauge transformations.</p>\n\n<p>We first introduce the notion of hereditary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-paracompactness along with the semiclassicality condition on a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifold, which enables us to use local convexity in local arguments. Then, we prove that for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifolds <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the smooth singular complex of the diffeological space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity Baseline left-parenthesis upper M comma upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty (M,N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is weakly equivalent to the ordinary singular complex of the topological space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C Superscript 0 Baseline left-parenthesis upper M comma upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal {C}^0}(M,N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under the hereditary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-paracompactness and semiclassicality conditions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We next generalize this result to sections of fiber bundles over a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under the same conditions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Further, we establish the Dwyer-Kan equivalence between the simplicial groupoid of smooth principal <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-bundles over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and that of continuous principal <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-bundles over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for a Lie group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under the same conditions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, encoding the smoothing results for principal bundles and gauge transformations.</p>\n\n<p>For the proofs, we fully faithfully embed the category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifolds into the category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D\">\n <mml:semantics>\n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Smooth Homotopy of Infinite-Dimensional 𝐶^{∞}-Manifolds\",\"authors\":\"Hiroshi Kihara\",\"doi\":\"10.1090/memo/1436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we use homotopical algebra (or abstract homotopical methods) to study smooth homotopical problems of infinite-dimensional <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^{\\\\infty }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifolds in convenient calculus. More precisely, we discuss the smoothing of maps, sections, principal bundles, and gauge transformations.</p>\\n\\n<p>We first introduce the notion of hereditary <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-paracompactness along with the semiclassicality condition on a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifold, which enables us to use local convexity in local arguments. Then, we prove that for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifolds <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\">\\n <mml:semantics>\\n <mml:mi>N</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, the smooth singular complex of the diffeological space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity Baseline left-parenthesis upper M comma upper N right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>N</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty (M,N)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is weakly equivalent to the ordinary singular complex of the topological space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper C Superscript 0 Baseline left-parenthesis upper M comma upper N right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mn>0</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>N</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathcal {C}^0}(M,N)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> under the hereditary <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-paracompactness and semiclassicality conditions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We next generalize this result to sections of fiber bundles over a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifold <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> under the same conditions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Further, we establish the Dwyer-Kan equivalence between the simplicial groupoid of smooth principal <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-bundles over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and that of continuous principal <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-bundles over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for a Lie group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifold <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> under the same conditions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, encoding the smoothing results for principal bundles and gauge transformations.</p>\\n\\n<p>For the proofs, we fully faithfully embed the category <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^{\\\\infty }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^{\\\\infty }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifolds into the category <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper D\\\">\\n <mml:semantics>\\n\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们使用同位代数(或抽象同位方法)来研究方便微积分中无穷维C∞C^{\infty}-流形的光滑同位问题。更准确地说,我们讨论了映射、截面、主丛和规范变换的光滑性。我们首先引入了遗传C∞C^\infty-仿紧性的概念,以及C∞C^ \infity-流形上的半经典性条件,这使我们能够在局部变元中使用局部凸性。然后证明了对于C∞C^\ infty-流形M M和N N,微分空间C∞(M,NM上的C∞C^\ infty-仿紧性和半经典性条件。接下来,我们将这一结果推广到在M M上相同条件下C∞C^\信息流形M M上的纤维束截面。此外,我们在M M上的相同条件下,建立了李群G G和C∞C^\实流形M M M上光滑主G G-丛的单群胚与M M上连续主G-丛单群胚之间的Dwyer-Kan等价,对主丛和规范变换的平滑结果进行编码。对于证明,我们完全忠实地将C∞C^{infty}-流形的范畴C∞C^{infity}嵌入到该范畴中
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth Homotopy of Infinite-Dimensional 𝐶^{∞}-Manifolds

In this paper, we use homotopical algebra (or abstract homotopical methods) to study smooth homotopical problems of infinite-dimensional C C^{\infty } -manifolds in convenient calculus. More precisely, we discuss the smoothing of maps, sections, principal bundles, and gauge transformations.

We first introduce the notion of hereditary C C^\infty -paracompactness along with the semiclassicality condition on a C C^\infty -manifold, which enables us to use local convexity in local arguments. Then, we prove that for C C^\infty -manifolds M M and N N , the smooth singular complex of the diffeological space C ( M , N ) C^\infty (M,N) is weakly equivalent to the ordinary singular complex of the topological space C 0 ( M , N ) {\mathcal {C}^0}(M,N) under the hereditary C C^\infty -paracompactness and semiclassicality conditions on M M . We next generalize this result to sections of fiber bundles over a C C^\infty -manifold M M under the same conditions on M M . Further, we establish the Dwyer-Kan equivalence between the simplicial groupoid of smooth principal G G -bundles over M M and that of continuous principal G G -bundles over M M for a Lie group G G and a C C^\infty -manifold M M under the same conditions on M M , encoding the smoothing results for principal bundles and gauge transformations.

For the proofs, we fully faithfully embed the category C C^{\infty } of C C^{\infty } -manifolds into the category

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信