{"title":"无穷维流形的光滑同伦","authors":"Hiroshi Kihara","doi":"10.1090/memo/1436","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we use homotopical algebra (or abstract homotopical methods) to study smooth homotopical problems of infinite-dimensional <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifolds in convenient calculus. More precisely, we discuss the smoothing of maps, sections, principal bundles, and gauge transformations.</p>\n\n<p>We first introduce the notion of hereditary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-paracompactness along with the semiclassicality condition on a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifold, which enables us to use local convexity in local arguments. Then, we prove that for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifolds <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the smooth singular complex of the diffeological space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity Baseline left-parenthesis upper M comma upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty (M,N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is weakly equivalent to the ordinary singular complex of the topological space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C Superscript 0 Baseline left-parenthesis upper M comma upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal {C}^0}(M,N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under the hereditary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-paracompactness and semiclassicality conditions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We next generalize this result to sections of fiber bundles over a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under the same conditions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Further, we establish the Dwyer-Kan equivalence between the simplicial groupoid of smooth principal <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-bundles over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and that of continuous principal <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-bundles over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for a Lie group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under the same conditions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, encoding the smoothing results for principal bundles and gauge transformations.</p>\n\n<p>For the proofs, we fully faithfully embed the category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifolds into the category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D\">\n <mml:semantics>\n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Smooth Homotopy of Infinite-Dimensional 𝐶^{∞}-Manifolds\",\"authors\":\"Hiroshi Kihara\",\"doi\":\"10.1090/memo/1436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we use homotopical algebra (or abstract homotopical methods) to study smooth homotopical problems of infinite-dimensional <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^{\\\\infty }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifolds in convenient calculus. More precisely, we discuss the smoothing of maps, sections, principal bundles, and gauge transformations.</p>\\n\\n<p>We first introduce the notion of hereditary <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-paracompactness along with the semiclassicality condition on a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifold, which enables us to use local convexity in local arguments. Then, we prove that for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifolds <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\">\\n <mml:semantics>\\n <mml:mi>N</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, the smooth singular complex of the diffeological space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity Baseline left-parenthesis upper M comma upper N right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>N</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty (M,N)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is weakly equivalent to the ordinary singular complex of the topological space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper C Superscript 0 Baseline left-parenthesis upper M comma upper N right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mn>0</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>N</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathcal {C}^0}(M,N)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> under the hereditary <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-paracompactness and semiclassicality conditions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We next generalize this result to sections of fiber bundles over a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifold <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> under the same conditions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Further, we establish the Dwyer-Kan equivalence between the simplicial groupoid of smooth principal <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-bundles over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and that of continuous principal <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-bundles over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for a Lie group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifold <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> under the same conditions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, encoding the smoothing results for principal bundles and gauge transformations.</p>\\n\\n<p>For the proofs, we fully faithfully embed the category <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^{\\\\infty }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^{\\\\infty }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifolds into the category <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper D\\\">\\n <mml:semantics>\\n\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Smooth Homotopy of Infinite-Dimensional 𝐶^{∞}-Manifolds
In this paper, we use homotopical algebra (or abstract homotopical methods) to study smooth homotopical problems of infinite-dimensional C∞C^{\infty }-manifolds in convenient calculus. More precisely, we discuss the smoothing of maps, sections, principal bundles, and gauge transformations.
We first introduce the notion of hereditary C∞C^\infty-paracompactness along with the semiclassicality condition on a C∞C^\infty-manifold, which enables us to use local convexity in local arguments. Then, we prove that for C∞C^\infty-manifolds MM and NN, the smooth singular complex of the diffeological space C∞(M,N)C^\infty (M,N) is weakly equivalent to the ordinary singular complex of the topological space C0(M,N){\mathcal {C}^0}(M,N) under the hereditary C∞C^\infty-paracompactness and semiclassicality conditions on MM. We next generalize this result to sections of fiber bundles over a C∞C^\infty-manifold MM under the same conditions on MM. Further, we establish the Dwyer-Kan equivalence between the simplicial groupoid of smooth principal GG-bundles over MM and that of continuous principal GG-bundles over MM for a Lie group GG and a C∞C^\infty-manifold MM under the same conditions on MM, encoding the smoothing results for principal bundles and gauge transformations.
For the proofs, we fully faithfully embed the category C∞C^{\infty } of C∞C^{\infty }-manifolds into the category