The Slice Spectral Sequence of a 𝐶₄-Equivariant Height-4 Lubin–Tate Theory

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michael Hill, Xiaolin Shi, Guozhen Wang, Zhouli Xu
{"title":"The Slice Spectral Sequence of a 𝐶₄-Equivariant Height-4 Lubin–Tate Theory","authors":"Michael Hill, Xiaolin Shi, Guozhen Wang, Zhouli Xu","doi":"10.1090/memo/1429","DOIUrl":null,"url":null,"abstract":"<p>We completely compute the slice spectral sequence of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-spectrum <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper P Superscript left-parenthesis left-parenthesis upper C 4 right-parenthesis right-parenthesis Baseline mathematical left-angle 2 mathematical right-angle\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:msup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BP^{(\\!(C_4)\\!)}\\langle 2 \\rangle</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This spectrum provides a model for a height-4 Lubin–Tate theory with a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 4 Superscript h upper C 12\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>E</mml:mi>\n <mml:mn>4</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>h</mml:mi>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>12</mml:mn>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">E_4^{hC_{12}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is 384-periodic.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We completely compute the slice spectral sequence of the C 4 C_4 -spectrum B P ( ( C 4 ) ) 2 BP^{(\!(C_4)\!)}\langle 2 \rangle . This spectrum provides a model for a height-4 Lubin–Tate theory with a C 4 C_4 -action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that E 4 h C 12 E_4^{hC_{12}} is 384-periodic.

一个的切片谱序列𝐶₄-等高-4鲁宾-泰特理论
我们完全计算了C4 C_4谱BP((C4))⟨2⟩BP^{(!(C_4)\!)}\langle2\rangle的切片谱序列。该谱为高度为4的Lubin–Tate理论提供了一个模型,该理论具有由Goerss–Hopkins–Miller定理导出的C4 C_4作用。特别地,我们的计算表明E4hC12E_4^{hC_{12}}是384周期性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信