Michael Hill, Xiaolin Shi, Guozhen Wang, Zhouli Xu
{"title":"The Slice Spectral Sequence of a 𝐶₄-Equivariant Height-4 Lubin–Tate Theory","authors":"Michael Hill, Xiaolin Shi, Guozhen Wang, Zhouli Xu","doi":"10.1090/memo/1429","DOIUrl":null,"url":null,"abstract":"<p>We completely compute the slice spectral sequence of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-spectrum <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper P Superscript left-parenthesis left-parenthesis upper C 4 right-parenthesis right-parenthesis Baseline mathematical left-angle 2 mathematical right-angle\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:msup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BP^{(\\!(C_4)\\!)}\\langle 2 \\rangle</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This spectrum provides a model for a height-4 Lubin–Tate theory with a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 4 Superscript h upper C 12\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>E</mml:mi>\n <mml:mn>4</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>h</mml:mi>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>12</mml:mn>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">E_4^{hC_{12}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is 384-periodic.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We completely compute the slice spectral sequence of the C4C_4-spectrum BP((C4))⟨2⟩BP^{(\!(C_4)\!)}\langle 2 \rangle. This spectrum provides a model for a height-4 Lubin–Tate theory with a C4C_4-action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that E4hC12E_4^{hC_{12}} is 384-periodic.