Michael Hill, Xiaolin Shi, Guozhen Wang, Zhouli Xu
{"title":"The Slice Spectral Sequence of a 𝐶₄-Equivariant Height-4 Lubin–Tate Theory","authors":"Michael Hill, Xiaolin Shi, Guozhen Wang, Zhouli Xu","doi":"10.1090/memo/1429","DOIUrl":null,"url":null,"abstract":"<p>We completely compute the slice spectral sequence of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-spectrum <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper P Superscript left-parenthesis left-parenthesis upper C 4 right-parenthesis right-parenthesis Baseline mathematical left-angle 2 mathematical right-angle\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:msup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BP^{(\\!(C_4)\\!)}\\langle 2 \\rangle</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This spectrum provides a model for a height-4 Lubin–Tate theory with a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 4 Superscript h upper C 12\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>E</mml:mi>\n <mml:mn>4</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>h</mml:mi>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>12</mml:mn>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">E_4^{hC_{12}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is 384-periodic.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1429","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We completely compute the slice spectral sequence of the C4C_4-spectrum BP((C4))⟨2⟩BP^{(\!(C_4)\!)}\langle 2 \rangle. This spectrum provides a model for a height-4 Lubin–Tate theory with a C4C_4-action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that E4hC12E_4^{hC_{12}} is 384-periodic.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.