维数≤6的乘不变域

IF 2 4区 数学 Q1 MATHEMATICS
A. Hoshi, M. Kang, A. Yamasaki
{"title":"维数≤6的乘不变域","authors":"A. Hoshi, M. Kang, A. Yamasaki","doi":"10.1090/memo/1403","DOIUrl":null,"url":null,"abstract":"<p>The finite subgroups of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L 4 left-parenthesis double-struck upper Z right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">GL_4(\\mathbb {Z})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are classified up to conjugation in Brown, Büllow, Neubüser, Wondratscheck, and Zassenhaus (1978); in particular, there exist <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"710\">\n <mml:semantics>\n <mml:mn>710</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">710</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> non-conjugate finite groups in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L 4 left-parenthesis double-struck upper Z right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">GL_4(\\mathbb {Z})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Each finite group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L 4 left-parenthesis double-struck upper Z right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">GL_4(\\mathbb {Z})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> acts naturally on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Superscript circled-plus 4\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>⊕<!-- ⊕ --></mml:mo>\n <mml:mn>4</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}^{\\oplus 4}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>; thus we get a faithful <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-lattice <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal r normal a normal n normal k Subscript double-struck upper Z Baseline upper M equals 4\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">a</mml:mi>\n <mml:mi mathvariant=\"normal\">n</mml:mi>\n <mml:mi mathvariant=\"normal\">k</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mi>M</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>4</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {rank}_\\mathbb {Z} M=4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this way, there are exactly <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"710\">\n <mml:semantics>\n <mml:mn>710</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">710</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such lattices. Given a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-lattice <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal r normal a normal n normal k Subscript double-struck upper Z Baseline upper M equals 4\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">a</mml:mi>\n <mml:mi mathvariant=\"normal\">n</mml:mi>\n <mml:mi mathvariant=\"normal\">k</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mi>M</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>4</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {rank}_\\mathbb {Z} M=4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> acts on the rational function field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C left-parenthesis upper M right-parenthesis colon-equal double-struck upper C left-parenthesis x 1 comma x 2 comma x 3 comma x 4 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}(M)≔\\mathbb {C}(x_1,x_2,x_3,x_4)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> by multiplicative actions, i.e. purely monomial automorphisms over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We are concerned with the rationality problem of the fixed field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C left-parenthesis upper M right-parenthesis Superscript upper G\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>G</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}(M)^G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. A tool of our investigation is the unramified Brauer group of the field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C left-parenthesis upper M right-parenthesis Superscript upper G\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo str","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative Invariant Fields of Dimension ≤6\",\"authors\":\"A. Hoshi, M. Kang, A. Yamasaki\",\"doi\":\"10.1090/memo/1403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The finite subgroups of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper L 4 left-parenthesis double-struck upper Z right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>G</mml:mi>\\n <mml:msub>\\n <mml:mi>L</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">GL_4(\\\\mathbb {Z})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are classified up to conjugation in Brown, Büllow, Neubüser, Wondratscheck, and Zassenhaus (1978); in particular, there exist <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"710\\\">\\n <mml:semantics>\\n <mml:mn>710</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">710</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> non-conjugate finite groups in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper L 4 left-parenthesis double-struck upper Z right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>G</mml:mi>\\n <mml:msub>\\n <mml:mi>L</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">GL_4(\\\\mathbb {Z})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Each finite group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper L 4 left-parenthesis double-struck upper Z right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>G</mml:mi>\\n <mml:msub>\\n <mml:mi>L</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">GL_4(\\\\mathbb {Z})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> acts naturally on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z Superscript circled-plus 4\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>⊕<!-- ⊕ --></mml:mo>\\n <mml:mn>4</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}^{\\\\oplus 4}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>; thus we get a faithful <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-lattice <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal r normal a normal n normal k Subscript double-struck upper Z Baseline upper M equals 4\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">a</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">n</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">k</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mi>M</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>4</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {rank}_\\\\mathbb {Z} M=4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In this way, there are exactly <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"710\\\">\\n <mml:semantics>\\n <mml:mn>710</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">710</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> such lattices. Given a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-lattice <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal r normal a normal n normal k Subscript double-struck upper Z Baseline upper M equals 4\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">a</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">n</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">k</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mi>M</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>4</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {rank}_\\\\mathbb {Z} M=4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, the group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> acts on the rational function field <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C left-parenthesis upper M right-parenthesis colon-equal double-struck upper C left-parenthesis x 1 comma x 2 comma x 3 comma x 4 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≔</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>x</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>x</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>x</mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>x</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {C}(M)≔\\\\mathbb {C}(x_1,x_2,x_3,x_4)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> by multiplicative actions, i.e. purely monomial automorphisms over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {C}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We are concerned with the rationality problem of the fixed field <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C left-parenthesis upper M right-parenthesis Superscript upper G\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mi>G</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {C}(M)^G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. A tool of our investigation is the unramified Brauer group of the field <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C left-parenthesis upper M right-parenthesis Superscript upper G\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mo str\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1403\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1403","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Brown,Büllow,Neubüser,Wondratscheck和Zassenhaus(1978)中,对G L 4(Z)GL_4(\mathbb{Z})的有限子群进行了共轭分类;特别地,在G L4(Z)GL_4(\mathbb{Z})中存在710 710个非共轭有限群。G L4(Z)GL_4(\mathbb{Z})的每个有限群G G自然作用于ZŞ4\mathbb{Z}^{\oplus 4};因此我们得到了一个忠实的G G-格M M,其中r a n k Z M=4{rank}_\mathb{Z}M=4。通过这种方式,正好有710 710个这样的晶格。给定一个具有r a n k Z M=4\ mathrm的G G-格M M{rank}_\mathbb{Z}M=4,群G G通过乘法作用作用于有理函数域C(M)≔C(x1,x2,x3,x4)\mathbb{C}(M)\ mathbb{C}(x_1,x_2,x_3,x_4),即C\mathbb{C}上的纯单体自同构。我们讨论了固定域C(M)G\mathbb{C}(M)^G的合理性问题。我们研究的一个工具是域C本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Multiplicative Invariant Fields of Dimension ≤6

The finite subgroups of G L 4 ( Z ) GL_4(\mathbb {Z}) are classified up to conjugation in Brown, Büllow, Neubüser, Wondratscheck, and Zassenhaus (1978); in particular, there exist 710 710 non-conjugate finite groups in G L 4 ( Z ) GL_4(\mathbb {Z}) . Each finite group G G of G L 4 ( Z ) GL_4(\mathbb {Z}) acts naturally on Z 4 \mathbb {Z}^{\oplus 4} ; thus we get a faithful G G -lattice M M with r a n k Z M = 4 \mathrm {rank}_\mathbb {Z} M=4 . In this way, there are exactly 710 710 such lattices. Given a G G -lattice M M with r a n k Z M = 4 \mathrm {rank}_\mathbb {Z} M=4 , the group G G acts on the rational function field C ( M ) C ( x 1 , x 2 , x 3 , x 4 ) \mathbb {C}(M)≔\mathbb {C}(x_1,x_2,x_3,x_4) by multiplicative actions, i.e. purely monomial automorphisms over C \mathbb {C} . We are concerned with the rationality problem of the fixed field C ( M ) G \mathbb {C}(M)^G . A tool of our investigation is the unramified Brauer group of the field C

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信