空间的空间:度量空间空间上的曲率边界和梯度流

IF 2 4区 数学 Q1 MATHEMATICS
Karl-Theodor Sturm
{"title":"空间的空间:度量空间空间上的曲率边界和梯度流","authors":"Karl-Theodor Sturm","doi":"10.1090/memo/1443","DOIUrl":null,"url":null,"abstract":"Equipped with the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 2 comma q\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^{2,q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-distortion distance <inline-formula content-type=\"math/tex\"> <tex-math> \\DD _{2,q}</tex-math></inline-formula>, the space <inline-formula content-type=\"math/tex\"> <tex-math> \\XX _{2q}</tex-math></inline-formula> of all metric measure spaces <inline-formula content-type=\"math/tex\"> <tex-math> (X,\\d ,\\m )</tex-math></inline-formula> is proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on <inline-formula content-type=\"math/tex\"> <tex-math> \\ol \\XX _{2q}</tex-math></inline-formula> are presented.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"119 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces\",\"authors\":\"Karl-Theodor Sturm\",\"doi\":\"10.1090/memo/1443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Equipped with the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript 2 comma q\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^{2,q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-distortion distance <inline-formula content-type=\\\"math/tex\\\"> <tex-math> \\\\DD _{2,q}</tex-math></inline-formula>, the space <inline-formula content-type=\\\"math/tex\\\"> <tex-math> \\\\XX _{2q}</tex-math></inline-formula> of all metric measure spaces <inline-formula content-type=\\\"math/tex\\\"> <tex-math> (X,\\\\d ,\\\\m )</tex-math></inline-formula> is proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on <inline-formula content-type=\\\"math/tex\\\"> <tex-math> \\\\ol \\\\XX _{2q}</tex-math></inline-formula> are presented.\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1443\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1443","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 78

摘要

利用l2,q L^{2,q} -畸变距离\DD _{2,q},证明了所有度量测量空间(X,\d,\m)的空间\XX _{2q}在Alexandrov意义上具有非负曲率。详细描述了测地线和切线空间。此外,还给出了半凸泛函的类及其在\ol \XX _{2q}上的梯度流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces
Equipped with the L 2 , q L^{2,q} -distortion distance \DD _{2,q}, the space \XX _{2q} of all metric measure spaces (X,\d ,\m ) is proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on \ol \XX _{2q} are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信