{"title":"空间的空间:度量空间空间上的曲率边界和梯度流","authors":"Karl-Theodor Sturm","doi":"10.1090/memo/1443","DOIUrl":null,"url":null,"abstract":"Equipped with the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 2 comma q\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^{2,q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-distortion distance <inline-formula content-type=\"math/tex\"> <tex-math> \\DD _{2,q}</tex-math></inline-formula>, the space <inline-formula content-type=\"math/tex\"> <tex-math> \\XX _{2q}</tex-math></inline-formula> of all metric measure spaces <inline-formula content-type=\"math/tex\"> <tex-math> (X,\\d ,\\m )</tex-math></inline-formula> is proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on <inline-formula content-type=\"math/tex\"> <tex-math> \\ol \\XX _{2q}</tex-math></inline-formula> are presented.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"119 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces\",\"authors\":\"Karl-Theodor Sturm\",\"doi\":\"10.1090/memo/1443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Equipped with the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript 2 comma q\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^{2,q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-distortion distance <inline-formula content-type=\\\"math/tex\\\"> <tex-math> \\\\DD _{2,q}</tex-math></inline-formula>, the space <inline-formula content-type=\\\"math/tex\\\"> <tex-math> \\\\XX _{2q}</tex-math></inline-formula> of all metric measure spaces <inline-formula content-type=\\\"math/tex\\\"> <tex-math> (X,\\\\d ,\\\\m )</tex-math></inline-formula> is proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on <inline-formula content-type=\\\"math/tex\\\"> <tex-math> \\\\ol \\\\XX _{2q}</tex-math></inline-formula> are presented.\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1443\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1443","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces
Equipped with the L2,qL^{2,q}-distortion distance \DD _{2,q}, the space \XX _{2q} of all metric measure spaces (X,\d ,\m ) is proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on \ol \XX _{2q} are presented.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.