求助PDF
{"title":"一个的切片谱序列𝐶₄-等高-4鲁宾-泰特理论","authors":"Michael Hill, Xiaolin Shi, Guozhen Wang, Zhouli Xu","doi":"10.1090/memo/1429","DOIUrl":null,"url":null,"abstract":"<p>We completely compute the slice spectral sequence of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-spectrum <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper P Superscript left-parenthesis left-parenthesis upper C 4 right-parenthesis right-parenthesis Baseline mathematical left-angle 2 mathematical right-angle\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:msup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BP^{(\\!(C_4)\\!)}\\langle 2 \\rangle</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This spectrum provides a model for a height-4 Lubin–Tate theory with a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 4 Superscript h upper C 12\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>E</mml:mi>\n <mml:mn>4</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>h</mml:mi>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>12</mml:mn>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">E_4^{hC_{12}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is 384-periodic.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Slice Spectral Sequence of a 𝐶₄-Equivariant Height-4 Lubin–Tate Theory\",\"authors\":\"Michael Hill, Xiaolin Shi, Guozhen Wang, Zhouli Xu\",\"doi\":\"10.1090/memo/1429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We completely compute the slice spectral sequence of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C 4\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C_4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-spectrum <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B upper P Superscript left-parenthesis left-parenthesis upper C 4 right-parenthesis right-parenthesis Baseline mathematical left-angle 2 mathematical right-angle\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>B</mml:mi>\\n <mml:msup>\\n <mml:mi>P</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mspace width=\\\"negativethinmathspace\\\" />\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mspace width=\\\"negativethinmathspace\\\" />\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨<!-- ⟨ --></mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩<!-- ⟩ --></mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">BP^{(\\\\!(C_4)\\\\!)}\\\\langle 2 \\\\rangle</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This spectrum provides a model for a height-4 Lubin–Tate theory with a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C 4\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C_4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 4 Superscript h upper C 12\\\">\\n <mml:semantics>\\n <mml:msubsup>\\n <mml:mi>E</mml:mi>\\n <mml:mn>4</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>h</mml:mi>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>12</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_4^{hC_{12}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is 384-periodic.</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1429\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1429","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用