一个的切片谱序列𝐶₄-等高-4鲁宾-泰特理论

IF 2 4区 数学 Q1 MATHEMATICS
Michael Hill, Xiaolin Shi, Guozhen Wang, Zhouli Xu
{"title":"一个的切片谱序列𝐶₄-等高-4鲁宾-泰特理论","authors":"Michael Hill, Xiaolin Shi, Guozhen Wang, Zhouli Xu","doi":"10.1090/memo/1429","DOIUrl":null,"url":null,"abstract":"<p>We completely compute the slice spectral sequence of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-spectrum <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper P Superscript left-parenthesis left-parenthesis upper C 4 right-parenthesis right-parenthesis Baseline mathematical left-angle 2 mathematical right-angle\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:msup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BP^{(\\!(C_4)\\!)}\\langle 2 \\rangle</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This spectrum provides a model for a height-4 Lubin–Tate theory with a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 4 Superscript h upper C 12\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>E</mml:mi>\n <mml:mn>4</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>h</mml:mi>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>12</mml:mn>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">E_4^{hC_{12}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is 384-periodic.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Slice Spectral Sequence of a 𝐶₄-Equivariant Height-4 Lubin–Tate Theory\",\"authors\":\"Michael Hill, Xiaolin Shi, Guozhen Wang, Zhouli Xu\",\"doi\":\"10.1090/memo/1429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We completely compute the slice spectral sequence of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C 4\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C_4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-spectrum <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B upper P Superscript left-parenthesis left-parenthesis upper C 4 right-parenthesis right-parenthesis Baseline mathematical left-angle 2 mathematical right-angle\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>B</mml:mi>\\n <mml:msup>\\n <mml:mi>P</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mspace width=\\\"negativethinmathspace\\\" />\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mspace width=\\\"negativethinmathspace\\\" />\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨<!-- ⟨ --></mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩<!-- ⟩ --></mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">BP^{(\\\\!(C_4)\\\\!)}\\\\langle 2 \\\\rangle</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This spectrum provides a model for a height-4 Lubin–Tate theory with a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C 4\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C_4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 4 Superscript h upper C 12\\\">\\n <mml:semantics>\\n <mml:msubsup>\\n <mml:mi>E</mml:mi>\\n <mml:mn>4</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>h</mml:mi>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>12</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_4^{hC_{12}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is 384-periodic.</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1429\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1429","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们完全计算了C4 C_4谱BP((C4))⟨2⟩BP^{(!(C_4)\!)}\langle2\rangle的切片谱序列。该谱为高度为4的Lubin–Tate理论提供了一个模型,该理论具有由Goerss–Hopkins–Miller定理导出的C4 C_4作用。特别地,我们的计算表明E4hC12E_4^{hC_{12}}是384周期性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Slice Spectral Sequence of a 𝐶₄-Equivariant Height-4 Lubin–Tate Theory

We completely compute the slice spectral sequence of the C 4 C_4 -spectrum B P ( ( C 4 ) ) 2 BP^{(\!(C_4)\!)}\langle 2 \rangle . This spectrum provides a model for a height-4 Lubin–Tate theory with a C 4 C_4 -action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that E 4 h C 12 E_4^{hC_{12}} is 384-periodic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信