{"title":"Smooth Homotopy of Infinite-Dimensional 𝐶^{∞}-Manifolds","authors":"Hiroshi Kihara","doi":"10.1090/memo/1436","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we use homotopical algebra (or abstract homotopical methods) to study smooth homotopical problems of infinite-dimensional <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifolds in convenient calculus. More precisely, we discuss the smoothing of maps, sections, principal bundles, and gauge transformations.</p>\n\n<p>We first introduce the notion of hereditary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-paracompactness along with the semiclassicality condition on a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifold, which enables us to use local convexity in local arguments. Then, we prove that for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifolds <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the smooth singular complex of the diffeological space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity Baseline left-parenthesis upper M comma upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty (M,N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is weakly equivalent to the ordinary singular complex of the topological space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C Superscript 0 Baseline left-parenthesis upper M comma upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal {C}^0}(M,N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under the hereditary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-paracompactness and semiclassicality conditions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We next generalize this result to sections of fiber bundles over a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under the same conditions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Further, we establish the Dwyer-Kan equivalence between the simplicial groupoid of smooth principal <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-bundles over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and that of continuous principal <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-bundles over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for a Lie group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under the same conditions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, encoding the smoothing results for principal bundles and gauge transformations.</p>\n\n<p>For the proofs, we fully faithfully embed the category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifolds into the category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D\">\n <mml:semantics>\n","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1436","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we use homotopical algebra (or abstract homotopical methods) to study smooth homotopical problems of infinite-dimensional C∞C^{\infty }-manifolds in convenient calculus. More precisely, we discuss the smoothing of maps, sections, principal bundles, and gauge transformations.
We first introduce the notion of hereditary C∞C^\infty-paracompactness along with the semiclassicality condition on a C∞C^\infty-manifold, which enables us to use local convexity in local arguments. Then, we prove that for C∞C^\infty-manifolds MM and NN, the smooth singular complex of the diffeological space C∞(M,N)C^\infty (M,N) is weakly equivalent to the ordinary singular complex of the topological space C0(M,N){\mathcal {C}^0}(M,N) under the hereditary C∞C^\infty-paracompactness and semiclassicality conditions on MM. We next generalize this result to sections of fiber bundles over a C∞C^\infty-manifold MM under the same conditions on MM. Further, we establish the Dwyer-Kan equivalence between the simplicial groupoid of smooth principal GG-bundles over MM and that of continuous principal GG-bundles over MM for a Lie group GG and a C∞C^\infty-manifold MM under the same conditions on MM, encoding the smoothing results for principal bundles and gauge transformations.
For the proofs, we fully faithfully embed the category C∞C^{\infty } of C∞C^{\infty }-manifolds into the category
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.