Sur un problème de compatibilité local-global localement analytique

IF 2 4区 数学 Q1 MATHEMATICS
Christophe Breuil, Yiwen Ding
{"title":"Sur un problème de compatibilité local-global localement analytique","authors":"Christophe Breuil, Yiwen Ding","doi":"10.1090/memo/1442","DOIUrl":null,"url":null,"abstract":"On réinterprète et on précise la conjecture du <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E x t Superscript 1\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>x</mml:mi> <mml:msup> <mml:mi>t</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Ext^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> localement analytique de \\cite{Br1} de manière fonctorielle en utilisant les <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis phi comma normal upper Gamma right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>φ<!-- φ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\varphi ,\\Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules sur l’anneau de Robba (avec éventuellement de la <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding=\"application/x-tex\">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-torsion). Puis on démontre plusieurs cas particuliers ou partiels de cette conjecture “améliorée”, notamment pour <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L 3 left-parenthesis double-struck upper Q Subscript p Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {GL}_3(\\mathbb {Q}_{p})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Abstract. We reinterpret the main conjecture of \\cite{Br1} on the locally analytic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E x t Superscript 1\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>x</mml:mi> <mml:msup> <mml:mi>t</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Ext^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a functorial way using <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis phi comma normal upper Gamma right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>φ<!-- φ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\varphi ,\\Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules (possibly with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding=\"application/x-tex\">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-torsion) over the Robba ring, making it more accurate. Then we prove several special or partial cases of this “improved” conjecture, notably for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L 3 left-parenthesis double-struck upper Q Subscript p Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {GL}_3(\\mathbb {Q}_{p})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"121 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1442","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

On réinterprète et on précise la conjecture du E x t 1 Ext^1 localement analytique de \cite{Br1} de manière fonctorielle en utilisant les ( φ , Γ ) (\varphi ,\Gamma ) -modules sur l’anneau de Robba (avec éventuellement de la t t -torsion). Puis on démontre plusieurs cas particuliers ou partiels de cette conjecture “améliorée”, notamment pour GL 3 ( Q p ) \operatorname {GL}_3(\mathbb {Q}_{p}) . Abstract. We reinterpret the main conjecture of \cite{Br1} on the locally analytic E x t 1 Ext^1 in a functorial way using ( φ , Γ ) (\varphi ,\Gamma ) -modules (possibly with t t -torsion) over the Robba ring, making it more accurate. Then we prove several special or partial cases of this “improved” conjecture, notably for GL 3 ( Q p ) \operatorname {GL}_3(\mathbb {Q}_{p}) .
局部-全局兼容性问题局部分析
我们全球而且准确的猜想E x t Ext ^ 1 \引述分析当地Br1} fonctorielle地使用(φ,Γ\ \ varphi,环比上-modules 23% (Gamma)可能与-torsion t t)。然后几个特例证明这个猜想或局部的“改善”,特别是为GL 3⁡GL (p) Q \ operatorname {} _3 _ (Q \ mathbb {} {} p)。文摘。(We the hand of \猜想reinterpret引用Br1} on the locally analytic E x (t - Ext ^ 1 in a functorial使用(φΓway) (\ \ varphi、-modules (Gamma)也许,with -torsion t t) over the ring, 23%的making it more准确。几种prove Then we of this special黄金偏方格“改良”猜想,GL notably for 3⁡GL (p) Q \ operatorname {} _3 _ (Q \ mathbb {} {} p)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信