The Second Moment Theory of Families of 𝐿-Functions–The Case of Twisted Hecke 𝐿-Functions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
V. Blomer, É. Fouvry, E. Kowalski, P. Michel, Djordje Milićević, W. Sawin
{"title":"The Second Moment Theory of Families of 𝐿-Functions–The Case of Twisted Hecke 𝐿-Functions","authors":"V. Blomer, É. Fouvry, E. Kowalski, P. Michel, Djordje Milićević, W. Sawin","doi":"10.1090/memo/1394","DOIUrl":null,"url":null,"abstract":"For a fairly general family of \n\n \n L\n L\n \n\n-functions, we survey the known consequences of the existence of asymptotic formulas with power-saving error term for the (twisted) first and second moments of the central values in the family.\n\nWe then consider in detail the important special case of the family of twists of a fixed cusp form by primitive Dirichlet characters modulo a prime \n\n \n q\n q\n \n\n, and prove that it satisfies such formulas. We derive arithmetic consequences: a positive proportion of central values \n\n \n \n L\n (\n f\n ⊗\n χ\n ,\n 1\n \n /\n \n 2\n )\n \n L(f\\otimes \\chi ,1/2)\n \n\n are non-zero, and indeed bounded from below; there exist many characters \n\n \n χ\n \\chi\n \n\n for which the central \n\n \n L\n L\n \n\n-value is very large; the probability of a large analytic rank decays exponentially fast. We finally show how the second moment estimate establishes a special case of a conjecture of Mazur and Rubin concerning the distribution of modular symbols.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

For a fairly general family of L L -functions, we survey the known consequences of the existence of asymptotic formulas with power-saving error term for the (twisted) first and second moments of the central values in the family. We then consider in detail the important special case of the family of twists of a fixed cusp form by primitive Dirichlet characters modulo a prime q q , and prove that it satisfies such formulas. We derive arithmetic consequences: a positive proportion of central values L ( f ⊗ χ , 1 / 2 ) L(f\otimes \chi ,1/2) are non-zero, and indeed bounded from below; there exist many characters χ \chi for which the central L L -value is very large; the probability of a large analytic rank decays exponentially fast. We finally show how the second moment estimate establishes a special case of a conjecture of Mazur and Rubin concerning the distribution of modular symbols.
的族的二阶矩理论𝐿-函数——扭曲Hecke的情况𝐿-功能
对于一个相当一般的L-函数族,我们考察了该族中心值的(扭曲的)一阶矩和二阶矩存在具有节能误差项的渐近公式的已知结果。然后,我们详细地考虑了基Dirichlet特征模素数q的固定尖点形式的扭曲族的重要特例,并证明了它满足这些公式。我们导出算术结果:中心值L(f⊗χ,1/2)L(f\otimes\chi,1/2)的正比例是非零的,并且确实从下面有界;存在许多特征χ;大的分析秩的概率以指数形式快速衰减。最后,我们展示了二阶矩估计如何建立Mazur和Rubin关于模符号分布的猜想的特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信