Journal of Commutative Algebra最新文献

筛选
英文 中文
A generalization of coefficient ideals 系数理想的概括
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1090/conm/773/15537
P. Lima
{"title":"A generalization of coefficient ideals","authors":"P. Lima","doi":"10.1090/conm/773/15537","DOIUrl":"https://doi.org/10.1090/conm/773/15537","url":null,"abstract":"<p>In this paper we give a generalization of the coefficient ideals of an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German m\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">m</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathfrak {m}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-primary ideal <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=\"application/x-tex\">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a quasi-unmixed local ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with infinite residue field.</p>","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"6 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78850280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of Liaison 联络申请
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_17
J. Migliore, U. Nagel
{"title":"Applications of Liaison","authors":"J. Migliore, U. Nagel","doi":"10.1007/978-3-030-89694-2_17","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_17","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"35 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75600910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The Étale locus in complete local rings 完全局部环中的Étale轨迹
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1090/conm/773/15532
R. Heitmann
{"title":"The Étale locus in complete local rings","authors":"R. Heitmann","doi":"10.1090/conm/773/15532","DOIUrl":"https://doi.org/10.1090/conm/773/15532","url":null,"abstract":"&lt;p&gt;Let &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;R&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; be a complete local ring and let &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;Q&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;Q&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; be a prime ideal of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;R&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. It is determined precisely which conditions on &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;R&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; are equivalent to the existence of a complete unramified regular local ring &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;A&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;A&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; and an element &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g element-of upper A minus upper Q\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;g&lt;/mml:mi&gt; &lt;mml:mo&gt;∈&lt;!-- ∈ --&gt;&lt;/mml:mo&gt; &lt;mml:mi&gt;A&lt;/mml:mi&gt; &lt;mml:mo&gt;−&lt;!-- − --&gt;&lt;/mml:mo&gt; &lt;mml:mi&gt;Q&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;gin A-Q&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; such that &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;R&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is a finite &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;A&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;A&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-module and &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript g Baseline long right-arrow upper R Subscript g\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;A&lt;/mml:mi&gt; &lt;mml:mi&gt;g&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo stretchy=\"false\"&gt;⟶&lt;!-- ⟶ --&gt;&lt;/mml:mo&gt; ","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"137 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79735692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Magic squares of squares over a finite field 有限域上正方形的幻方
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1090/conm/773/15536
S. Hengeveld, Giancarlo Labruna, Aihua Li
{"title":"Magic squares of squares over a finite field","authors":"S. Hengeveld, Giancarlo Labruna, Aihua Li","doi":"10.1090/conm/773/15536","DOIUrl":"https://doi.org/10.1090/conm/773/15536","url":null,"abstract":"&lt;p&gt;A magic square &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;M&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;M&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; over an integral domain &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;D&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is a &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 times 3\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;3&lt;/mml:mn&gt; &lt;mml:mo&gt;×&lt;!-- × --&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;3&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;3times 3&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; matrix with entries from &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;D&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; such that the elements from each row, column, and diagonal add to the same sum. If all the entries in &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;M&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;M&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; are perfect squares in &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;D&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, we call &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;M&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;M&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; a magic square of squares over &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;D&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. In 1984, Martin LaBar raised an open question: “Is there a magic square of squares over the ring &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;Z&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathbb {Z}&lt;/mml:annotation&gt; ","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"39 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85803885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tate resolutions and MCM approximations Tate分辨率和MCM近似
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1090/conm/773/15531
D. Eisenbud, F. Schreyer
{"title":"Tate resolutions and MCM approximations","authors":"D. Eisenbud, F. Schreyer","doi":"10.1090/conm/773/15531","DOIUrl":"https://doi.org/10.1090/conm/773/15531","url":null,"abstract":"&lt;p&gt;Let &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;M&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;M&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; be a finitely generated Cohen-Macaulay module of codimension &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;m&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;m&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; over a Gorenstein Ring &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R equals upper S slash upper I\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mi&gt;S&lt;/mml:mi&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo&gt;/&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;I&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;R = S/I&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, where &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;S&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;S&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is a regular ring. We show how to form a quasi-isomorphism &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;ϕ&lt;!-- ϕ --&gt;&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;phi&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; from an &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;R&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-free resolution of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;M&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;M&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; to the dual of an &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;R&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-free resolution of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M Superscript logical-or Baseline colon-equal normal upper E normal x normal t Subscript upper R Superscript m Baseline left-parenthesis upper M comma upper R right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mr","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"37 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89262554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multiplicities and Mixed Multiplicities of Filtrations 过滤的多重性和混合多重性
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_9
S. Cutkosky, H. Srinivasan
{"title":"Multiplicities and Mixed Multiplicities of Filtrations","authors":"S. Cutkosky, H. Srinivasan","doi":"10.1007/978-3-030-89694-2_9","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_9","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91195487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation in Module Categories and Derived Categories of Commutative Rings 交换环的模范畴和派生范畴的生成
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_24
Ryo Takahashi
{"title":"Generation in Module Categories and Derived Categories of Commutative Rings","authors":"Ryo Takahashi","doi":"10.1007/978-3-030-89694-2_24","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_24","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"47 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85583717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ℎ-local Rings ℎ——环
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1090/conm/773/15535
L. Klingler, A. Omairi
{"title":"ℎ-local Rings","authors":"L. Klingler, A. Omairi","doi":"10.1090/conm/773/15535","DOIUrl":"https://doi.org/10.1090/conm/773/15535","url":null,"abstract":"In the 1960’s, Matlis defined an h h -local domain to be a (commutative) integral domain in which each nonzero element is contained in only finitely many maximal ideals and each nonzero prime ideal is contained in a unique maximal ideal. For rings with zero-divisors, by changing “nonzero” to “regular,” one obtains the definition of an h h -local ring. Nearly two dozen equivalent characterizations of h h -local domain have appeared in the literature. We show that most of these remain equivalent to h h -local ring if one also replaces “localization” by “regular localization” and assumes that the ring is a Marot ring (i.e., every regular ideal is generated by its regular elements).","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"37 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84245660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularity Bounds by Projection 投影正则界
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_20
Wenbo Niu
{"title":"Regularity Bounds by Projection","authors":"Wenbo Niu","doi":"10.1007/978-3-030-89694-2_20","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_20","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"65 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86071803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational Points and Trace Forms on a Finite Algebra over a Real Closed Field 实闭域上有限代数上的有理点和迹形
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_22
D. Patil, J. K. Verma
{"title":"Rational Points and Trace Forms on a Finite Algebra over a Real Closed Field","authors":"D. Patil, J. K. Verma","doi":"10.1007/978-3-030-89694-2_22","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_22","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90094002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信