Journal of Commutative Algebra最新文献

筛选
英文 中文
Algebraic Geometry, Commutative Algebra and Combinatorics: Interactions and Open Problems 代数几何、交换代数与组合:相互作用与开放问题
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_14
B. Harbourne
{"title":"Algebraic Geometry, Commutative Algebra and Combinatorics: Interactions and Open Problems","authors":"B. Harbourne","doi":"10.1007/978-3-030-89694-2_14","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_14","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"141 2 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77229206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Zariski-Riemann Space of Valuation Rings 估值环的Zariski-Riemann空间
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_21
B. Olberding
{"title":"The Zariski-Riemann Space of Valuation Rings","authors":"B. Olberding","doi":"10.1007/978-3-030-89694-2_21","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_21","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"70 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78689936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subadditivity of Syzygies of Ideals and Related Problems 理想合的子可加性及其相关问题
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_16
J. McCullough
{"title":"Subadditivity of Syzygies of Ideals and Related Problems","authors":"J. McCullough","doi":"10.1007/978-3-030-89694-2_16","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_16","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"6 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79654987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Stanley-Reisner Rings Stanley-Reisner环
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_10
Ralf Fröberg
{"title":"Stanley-Reisner Rings","authors":"Ralf Fröberg","doi":"10.1007/978-3-030-89694-2_10","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_10","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"20 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79680502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
𝐿-dimension for modules over a local ring 𝐿-dimension用于本地环上的模块
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1090/conm/773/15534
Courtney R. Gibbons, David A. Jorgensen, J. Striuli
{"title":"𝐿-dimension for modules over a local ring","authors":"Courtney R. Gibbons, David A. Jorgensen, J. Striuli","doi":"10.1090/conm/773/15534","DOIUrl":"https://doi.org/10.1090/conm/773/15534","url":null,"abstract":"<p>We introduce a new homological dimension for finitely generated modules over a commutative local ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which is based on a complex derived from a free resolution <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the residue field of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and called <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension. We prove several properties of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension, give some applications, and compare <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension to complete intersection dimension.</p>","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"37 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87862281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Survey on Regularity of Symbolic Powers of an Edge Ideal 边理想符号幂的正则性研究
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_18
N. Minh, Thanh Vu
{"title":"Survey on Regularity of Symbolic Powers of an Edge Ideal","authors":"N. Minh, Thanh Vu","doi":"10.1007/978-3-030-89694-2_18","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_18","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"54 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85737511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
An upper bound for the first Hilbert coefficient of Gorenstein algebras and modules Gorenstein代数和模的第一希尔伯特系数的上界
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2020-12-25 DOI: 10.1090/conm/773/15542
Sabine El Khoury, Manoj Kummini, H. Srinivasan
{"title":"An upper bound for the first Hilbert coefficient of Gorenstein algebras and modules","authors":"Sabine El Khoury, Manoj Kummini, H. Srinivasan","doi":"10.1090/conm/773/15542","DOIUrl":"https://doi.org/10.1090/conm/773/15542","url":null,"abstract":"&lt;p&gt;Let &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mi&gt;R&lt;/mml:mi&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;R&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt; be a polynomial ring over a field and &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M equals circled-plus Underscript n Endscripts upper M Subscript n\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mrow&gt;\u0000 &lt;mml:mi&gt;M&lt;/mml:mi&gt;\u0000 &lt;mml:mo&gt;=&lt;/mml:mo&gt;\u0000 &lt;mml:munder&gt;\u0000 &lt;mml:mo&gt;⨁&lt;!-- ⨁ --&gt;&lt;/mml:mo&gt;\u0000 &lt;mml:mi&gt;n&lt;/mml:mi&gt;\u0000 &lt;/mml:munder&gt;\u0000 &lt;mml:msub&gt;\u0000 &lt;mml:mi&gt;M&lt;/mml:mi&gt;\u0000 &lt;mml:mi&gt;n&lt;/mml:mi&gt;\u0000 &lt;/mml:msub&gt;\u0000 &lt;/mml:mrow&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;M= bigoplus _n M_n&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt; be a finitely generated graded &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mi&gt;R&lt;/mml:mi&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;R&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt;-module, minimally generated by homogeneous elements of degree zero with a graded &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mi&gt;R&lt;/mml:mi&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;R&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt;-minimal free resolution &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper F\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt;\u0000 &lt;mml:mi mathvariant=\"bold\"&gt;F&lt;/mml:mi&gt;\u0000 &lt;/mml:mrow&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathbf {F}&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt;. A Cohen-Macaulay module &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mi&gt;M&lt;/mml:mi&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;M&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt; is Gorenstein when the graded resolution is symmetric. We give an upper bound for the first Hilbert coefficient, &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"e 1\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:msub&gt;\u0000 &lt;mml:mi&gt;e&lt;/mml:mi&gt;\u0000 &lt;mml:mn&gt;1&lt;/mml:mn&gt;\u0000 &lt;/mml:msub&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;e_1&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt; in terms of the shifts in the graded resolution of &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mi&gt;M&lt;/mml:mi&gt;\u0000 &lt;mml:annotation encoding=\"application/x-t","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"21 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81322912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symbolic Rees Algebras 符号树代数
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2020-12-03 DOI: 10.1007/978-3-030-89694-2_11
Elo'isa Grifo, A. Seceleanu
{"title":"Symbolic Rees Algebras","authors":"Elo'isa Grifo, A. Seceleanu","doi":"10.1007/978-3-030-89694-2_11","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_11","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"41 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73086741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
On the sum of $z$-ideals in subrings of $C(X)$ 关于C(X)的子函数中z的理想和
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2020-12-01 DOI: 10.1216/jca.2020.12.459
F. Azarpanah, M. Parsinia
{"title":"On the sum of $z$-ideals in subrings of $C(X)$","authors":"F. Azarpanah, M. Parsinia","doi":"10.1216/jca.2020.12.459","DOIUrl":"https://doi.org/10.1216/jca.2020.12.459","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"6 1","pages":"459-466"},"PeriodicalIF":0.6,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82349076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The Simplest Minimal Free Resolutions in $${mathbb {P}^1 times mathbb {P}^1}$$ 最简单的最小自由决议 $${mathbb {P}^1 times mathbb {P}^1}$$
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2020-11-05 DOI: 10.1007/978-3-030-89694-2_3
Nicolás Botbol, A. Dickenstein, H. Schenck
{"title":"The Simplest Minimal Free Resolutions in $${mathbb {P}^1 times mathbb {P}^1}$$","authors":"Nicolás Botbol, A. Dickenstein, H. Schenck","doi":"10.1007/978-3-030-89694-2_3","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_3","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"16 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83651814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信