𝐿-dimension用于本地环上的模块

Pub Date : 2021-01-01 DOI:10.1090/conm/773/15534
Courtney R. Gibbons, David A. Jorgensen, J. Striuli
{"title":"𝐿-dimension用于本地环上的模块","authors":"Courtney R. Gibbons, David A. Jorgensen, J. Striuli","doi":"10.1090/conm/773/15534","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new homological dimension for finitely generated modules over a commutative local ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which is based on a complex derived from a free resolution <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the residue field of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and called <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension. We prove several properties of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension, give some applications, and compare <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension to complete intersection dimension.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"𝐿-dimension for modules over a local ring\",\"authors\":\"Courtney R. Gibbons, David A. Jorgensen, J. Striuli\",\"doi\":\"10.1090/conm/773/15534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new homological dimension for finitely generated modules over a commutative local ring <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which is based on a complex derived from a free resolution <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the residue field of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and called <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension. We prove several properties of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension, give some applications, and compare <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension to complete intersection dimension.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/773/15534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/conm/773/15534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在交换局部环R R上,我们引入了一个新的有限生成模的同调维数,该同调维数是基于R R的剩余域的自由分辨率L L派生的复维数,称为L L维数。证明了L - L维数的几个性质,给出了一些应用,并将L - L维数与完全交维数进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
𝐿-dimension for modules over a local ring

We introduce a new homological dimension for finitely generated modules over a commutative local ring R R , which is based on a complex derived from a free resolution L L of the residue field of R R , and called L L -dimension. We prove several properties of L L -dimension, give some applications, and compare L L -dimension to complete intersection dimension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信