{"title":"Survey on Regularity of Symbolic Powers of an Edge Ideal","authors":"N. Minh, Thanh Vu","doi":"10.1007/978-3-030-89694-2_18","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_18","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85737511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An upper bound for the first Hilbert coefficient of Gorenstein algebras and modules","authors":"Sabine El Khoury, Manoj Kummini, H. Srinivasan","doi":"10.1090/conm/773/15542","DOIUrl":"https://doi.org/10.1090/conm/773/15542","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\u0000 <mml:semantics>\u0000 <mml:mi>R</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a polynomial ring over a field and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M equals circled-plus Underscript n Endscripts upper M Subscript n\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:munder>\u0000 <mml:mo>⨁<!-- ⨁ --></mml:mo>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:munder>\u0000 <mml:msub>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">M= bigoplus _n M_n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a finitely generated graded <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\u0000 <mml:semantics>\u0000 <mml:mi>R</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-module, minimally generated by homogeneous elements of degree zero with a graded <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\u0000 <mml:semantics>\u0000 <mml:mi>R</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-minimal free resolution <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper F\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">F</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbf {F}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. A Cohen-Macaulay module <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\u0000 <mml:semantics>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is Gorenstein when the graded resolution is symmetric. We give an upper bound for the first Hilbert coefficient, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"e 1\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>e</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">e_1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in terms of the shifts in the graded resolution of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\u0000 <mml:semantics>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:annotation encoding=\"application/x-t","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81322912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symbolic Rees Algebras","authors":"Elo'isa Grifo, A. Seceleanu","doi":"10.1007/978-3-030-89694-2_11","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_11","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73086741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the sum of $z$-ideals in subrings of $C(X)$","authors":"F. Azarpanah, M. Parsinia","doi":"10.1216/jca.2020.12.459","DOIUrl":"https://doi.org/10.1216/jca.2020.12.459","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82349076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Simplest Minimal Free Resolutions in $${mathbb {P}^1 times mathbb {P}^1}$$","authors":"Nicolás Botbol, A. Dickenstein, H. Schenck","doi":"10.1007/978-3-030-89694-2_3","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_3","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83651814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applications of Differential Graded Algebra Techniques in Commutative Algebra","authors":"Saeed Nasseh, S. Sather-Wagstaff","doi":"10.1007/978-3-030-89694-2_19","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_19","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89569223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An inequality in mixed multiplicities","authors":"Suprajo Das","doi":"10.1216/jca.2022.14.509","DOIUrl":"https://doi.org/10.1216/jca.2022.14.509","url":null,"abstract":"The theory of mixed multiplicities of (not necessarily Noetherian) filtrations of $m_R$-primary ideals in a Noetherian local ring $R$, has been developed by Cutkosky, Sarkar and Srinivasan. The objective of this article is to generalise a Minkowski type inequality given in their paper.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84783325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ASYMPTOTIC DEGREE OF RANDOM MONOMIAL IDEALS","authors":"Lily Silverstein, Dane Wilburne, J. Yang","doi":"10.1216/jca.2023.15.99","DOIUrl":"https://doi.org/10.1216/jca.2023.15.99","url":null,"abstract":"One of the fundamental invariants connecting algebra and geometry is the degree of an ideal. In this paper we derive the probabilistic behavior of degree with respect to the versatile Erdős-Renyi-type model for random monomial ideals defined in cite{rmi}. We study the staircase structure associated to a monomial ideal, and show that in the random case the shape of the staircase diagram is approximately hyperbolic, and this behavior is robust across several random models. Since the discrete volume under this staircase is related to the summatory higher-order divisor function studied in number theory, we use this connection and our control over the shape of the staircase diagram to derive the asymptotic degree of a random monomial ideal. Another way to compute the degree of a monomial ideal is with a standard pair decomposition. This paper derives bounds on the number of standard pairs of a random monomial ideal indexed by any subset of the ring variables. The standard pairs indexed by maximal subsets give a count of degree, as well as being a more nuanced invariant of the random monomial ideal.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80261028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dimension of finite free complexes over commutative Noetherian rings","authors":"Lars Christensen, S. Iyengar","doi":"10.1090/conm/773/15529","DOIUrl":"https://doi.org/10.1090/conm/773/15529","url":null,"abstract":"Foxby defined the (Krull) dimension of a complex of modules over a commutative Noetherian ring in terms of the dimension of its homology modules. In this note it is proved that the dimension of a bounded complex of free modules of finite rank can be computed directly from the matrices representing the differentials of the complex.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74889816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Poset embeddings of Hilbert functions for two hypersurface rings","authors":"Mitra Koley","doi":"10.1216/jca.2020.12.371","DOIUrl":"https://doi.org/10.1216/jca.2020.12.371","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85902030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}