随机单项式理想的渐近度

Pub Date : 2020-09-10 DOI:10.1216/jca.2023.15.99
Lily Silverstein, Dane Wilburne, J. Yang
{"title":"随机单项式理想的渐近度","authors":"Lily Silverstein, Dane Wilburne, J. Yang","doi":"10.1216/jca.2023.15.99","DOIUrl":null,"url":null,"abstract":"One of the fundamental invariants connecting algebra and geometry is the degree of an ideal. In this paper we derive the probabilistic behavior of degree with respect to the versatile Erdős-Renyi-type model for random monomial ideals defined in \\cite{rmi}. We study the staircase structure associated to a monomial ideal, and show that in the random case the shape of the staircase diagram is approximately hyperbolic, and this behavior is robust across several random models. Since the discrete volume under this staircase is related to the summatory higher-order divisor function studied in number theory, we use this connection and our control over the shape of the staircase diagram to derive the asymptotic degree of a random monomial ideal. Another way to compute the degree of a monomial ideal is with a standard pair decomposition. This paper derives bounds on the number of standard pairs of a random monomial ideal indexed by any subset of the ring variables. The standard pairs indexed by maximal subsets give a count of degree, as well as being a more nuanced invariant of the random monomial ideal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ASYMPTOTIC DEGREE OF RANDOM MONOMIAL IDEALS\",\"authors\":\"Lily Silverstein, Dane Wilburne, J. Yang\",\"doi\":\"10.1216/jca.2023.15.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the fundamental invariants connecting algebra and geometry is the degree of an ideal. In this paper we derive the probabilistic behavior of degree with respect to the versatile Erdős-Renyi-type model for random monomial ideals defined in \\\\cite{rmi}. We study the staircase structure associated to a monomial ideal, and show that in the random case the shape of the staircase diagram is approximately hyperbolic, and this behavior is robust across several random models. Since the discrete volume under this staircase is related to the summatory higher-order divisor function studied in number theory, we use this connection and our control over the shape of the staircase diagram to derive the asymptotic degree of a random monomial ideal. Another way to compute the degree of a monomial ideal is with a standard pair decomposition. This paper derives bounds on the number of standard pairs of a random monomial ideal indexed by any subset of the ring variables. The standard pairs indexed by maximal subsets give a count of degree, as well as being a more nuanced invariant of the random monomial ideal.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2023.15.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2023.15.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

理想度是连接代数和几何的基本不变量之一。本文导出了\cite{rmi}中定义的随机单项理想的通用性Erdős-Renyi-type模型的度的概率行为。我们研究了与单项式理想相关联的阶梯结构,并证明了在随机情况下,阶梯图的形状是近似双曲的,并且这种行为在多个随机模型中是鲁棒的。由于该阶梯下的离散体积与数论中研究的求和高阶除数函数有关,我们利用这一联系和我们对阶梯图形状的控制来推导随机单项式理想的渐近度。另一种计算单项式理想度的方法是使用标准对分解。本文导出了由环变量的任意子集索引的随机单项式理想的标准对数的界。由最大子集索引的标准对给出了一个度的计数,同时也是随机单项式理想的一个更细微的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ASYMPTOTIC DEGREE OF RANDOM MONOMIAL IDEALS
One of the fundamental invariants connecting algebra and geometry is the degree of an ideal. In this paper we derive the probabilistic behavior of degree with respect to the versatile Erdős-Renyi-type model for random monomial ideals defined in \cite{rmi}. We study the staircase structure associated to a monomial ideal, and show that in the random case the shape of the staircase diagram is approximately hyperbolic, and this behavior is robust across several random models. Since the discrete volume under this staircase is related to the summatory higher-order divisor function studied in number theory, we use this connection and our control over the shape of the staircase diagram to derive the asymptotic degree of a random monomial ideal. Another way to compute the degree of a monomial ideal is with a standard pair decomposition. This paper derives bounds on the number of standard pairs of a random monomial ideal indexed by any subset of the ring variables. The standard pairs indexed by maximal subsets give a count of degree, as well as being a more nuanced invariant of the random monomial ideal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信