{"title":"Magic squares of squares over a finite field","authors":"S. Hengeveld, Giancarlo Labruna, Aihua Li","doi":"10.1090/conm/773/15536","DOIUrl":null,"url":null,"abstract":"<p>A magic square <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over an integral domain <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 times 3\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3\\times 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix with entries from <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the elements from each row, column, and diagonal add to the same sum. If all the entries in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are perfect squares in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we call <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a magic square of squares over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In 1984, Martin LaBar raised an open question: “Is there a magic square of squares over the ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the integers which has all the nine entries distinct?” We approach to answering a similar question when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite field. We claim that for any odd prime <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a magic square over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb Z_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can only hold an odd number of distinct entries. Corresponding to LaBar’s question, we show that there are infinitely many prime numbers <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that, over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb Z_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, magic squares of squares with nine distinct elements exist. In addition, if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p identical-to 1 left-parenthesis mod 120 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>1</mml:mn> <mml:mspace width=\"0.667em\" /> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=\"0.333em\" /> <mml:mn>120</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p\\equiv 1\\pmod {120}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there exist magic squares of squares over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb Z_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that have exactly 3, 5, 7, or 9 distinct entries respectively. We construct magic squares of squares using triples of consecutive quadratic residues derived from twin primes.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/conm/773/15536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A magic square MM over an integral domain DD is a 3×33\times 3 matrix with entries from DD such that the elements from each row, column, and diagonal add to the same sum. If all the entries in MM are perfect squares in DD, we call MM a magic square of squares over DD. In 1984, Martin LaBar raised an open question: “Is there a magic square of squares over the ring Z\mathbb {Z} of the integers which has all the nine entries distinct?” We approach to answering a similar question when DD is a finite field. We claim that for any odd prime pp, a magic square over Zp\mathbb Z_p can only hold an odd number of distinct entries. Corresponding to LaBar’s question, we show that there are infinitely many prime numbers pp such that, over Zp\mathbb Z_p, magic squares of squares with nine distinct elements exist. In addition, if p≡1(mod120)p\equiv 1\pmod {120}, there exist magic squares of squares over Zp\mathbb Z_p that have exactly 3, 5, 7, or 9 distinct entries respectively. We construct magic squares of squares using triples of consecutive quadratic residues derived from twin primes.