有限域上正方形的幻方

Pub Date : 2021-01-01 DOI:10.1090/conm/773/15536
S. Hengeveld, Giancarlo Labruna, Aihua Li
{"title":"有限域上正方形的幻方","authors":"S. Hengeveld, Giancarlo Labruna, Aihua Li","doi":"10.1090/conm/773/15536","DOIUrl":null,"url":null,"abstract":"<p>A magic square <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over an integral domain <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 times 3\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3\\times 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix with entries from <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the elements from each row, column, and diagonal add to the same sum. If all the entries in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are perfect squares in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we call <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a magic square of squares over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In 1984, Martin LaBar raised an open question: “Is there a magic square of squares over the ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the integers which has all the nine entries distinct?” We approach to answering a similar question when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite field. We claim that for any odd prime <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a magic square over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb Z_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can only hold an odd number of distinct entries. Corresponding to LaBar’s question, we show that there are infinitely many prime numbers <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that, over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb Z_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, magic squares of squares with nine distinct elements exist. In addition, if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p identical-to 1 left-parenthesis mod 120 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>1</mml:mn> <mml:mspace width=\"0.667em\" /> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=\"0.333em\" /> <mml:mn>120</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p\\equiv 1\\pmod {120}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there exist magic squares of squares over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb Z_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that have exactly 3, 5, 7, or 9 distinct entries respectively. We construct magic squares of squares using triples of consecutive quadratic residues derived from twin primes.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magic squares of squares over a finite field\",\"authors\":\"S. Hengeveld, Giancarlo Labruna, Aihua Li\",\"doi\":\"10.1090/conm/773/15536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A magic square <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over an integral domain <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D\\\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3 times 3\\\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">3\\\\times 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix with entries from <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D\\\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the elements from each row, column, and diagonal add to the same sum. If all the entries in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are perfect squares in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D\\\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we call <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a magic square of squares over <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D\\\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In 1984, Martin LaBar raised an open question: “Is there a magic square of squares over the ring <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the integers which has all the nine entries distinct?” We approach to answering a similar question when <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D\\\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite field. We claim that for any odd prime <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a magic square over <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z Subscript p\\\"> <mml:semantics> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb Z_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can only hold an odd number of distinct entries. Corresponding to LaBar’s question, we show that there are infinitely many prime numbers <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that, over <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z Subscript p\\\"> <mml:semantics> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb Z_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, magic squares of squares with nine distinct elements exist. In addition, if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p identical-to 1 left-parenthesis mod 120 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>1</mml:mn> <mml:mspace width=\\\"0.667em\\\" /> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=\\\"0.333em\\\" /> <mml:mn>120</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p\\\\equiv 1\\\\pmod {120}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there exist magic squares of squares over <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z Subscript p\\\"> <mml:semantics> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb Z_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that have exactly 3, 5, 7, or 9 distinct entries respectively. We construct magic squares of squares using triples of consecutive quadratic residues derived from twin primes.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/773/15536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/conm/773/15536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在积分域上的幻方是一个3 × 3 × 3 × 3的矩阵,它的元素来自于D D使得每一行,每一列,每一条对角线的元素相加到相同的和。如果M M中的所有项都是D D中的完全平方项,我们称M M为D D上的平方的幻方。1984年,Martin LaBar提出了一个开放的问题:“在整数环Z \mathbb {Z}上是否存在一个魔方的平方,其中所有的九个元素都是不同的?”当pdd是有限域时,我们试图回答一个类似的问题。我们声明对于任何奇数素数p p,一个幻方除以zp \mathbb Z_p只能包含奇数个不同的元素。对应于LaBar的问题,我们证明了存在无穷多个素数p p,使得在zp \mathbb Z_p上,有九个不同元素的平方的幻方存在。另外,如果p≡1 (mod 120) p\equiv 1\pmod{120},则存在Z p\ mathbb Z_p上的平方的幻方,它们分别有3、5、7或9个不同的项。我们用由孪生素数导出的连续二次残的三元组构造幻方的幻方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Magic squares of squares over a finite field

A magic square M M over an integral domain D D is a 3 × 3 3\times 3 matrix with entries from D D such that the elements from each row, column, and diagonal add to the same sum. If all the entries in M M are perfect squares in D D , we call M M a magic square of squares over D D . In 1984, Martin LaBar raised an open question: “Is there a magic square of squares over the ring Z \mathbb {Z} of the integers which has all the nine entries distinct?” We approach to answering a similar question when D D is a finite field. We claim that for any odd prime p p , a magic square over Z p \mathbb Z_p can only hold an odd number of distinct entries. Corresponding to LaBar’s question, we show that there are infinitely many prime numbers p p such that, over Z p \mathbb Z_p , magic squares of squares with nine distinct elements exist. In addition, if p 1 ( mod 120 ) p\equiv 1\pmod {120} , there exist magic squares of squares over Z p \mathbb Z_p that have exactly 3, 5, 7, or 9 distinct entries respectively. We construct magic squares of squares using triples of consecutive quadratic residues derived from twin primes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信