{"title":"A generalization of coefficient ideals","authors":"P. Lima","doi":"10.1090/conm/773/15537","DOIUrl":null,"url":null,"abstract":"<p>In this paper we give a generalization of the coefficient ideals of an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German m\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">m</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {m}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-primary ideal <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=\"application/x-tex\">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a quasi-unmixed local ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with infinite residue field.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/conm/773/15537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we give a generalization of the coefficient ideals of an m\mathfrak {m}-primary ideal II in a quasi-unmixed local ring RR with infinite residue field.