Tate分辨率和MCM近似

Pub Date : 2021-01-01 DOI:10.1090/conm/773/15531
D. Eisenbud, F. Schreyer
{"title":"Tate分辨率和MCM近似","authors":"D. Eisenbud, F. Schreyer","doi":"10.1090/conm/773/15531","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finitely generated Cohen-Macaulay module of codimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over a Gorenstein Ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R equals upper S slash upper I\"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>=</mml:mo> <mml:mi>S</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">R = S/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a regular ring. We show how to form a quasi-isomorphism <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to the dual of an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M Superscript logical-or Baseline colon-equal normal upper E normal x normal t Subscript upper R Superscript m Baseline left-parenthesis upper M comma upper R right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>∨<!-- ∨ --></mml:mo> </mml:mrow> </mml:msup> <mml:mrow class=\"MJX-TeXAtom-REL\"> <mml:mo>≔</mml:mo> </mml:mrow> <mml:msubsup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">E</mml:mi> <mml:mi mathvariant=\"normal\">x</mml:mi> <mml:mi mathvariant=\"normal\">t</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">M^{\\vee }\\colonequals {\\mathrm {Ext}}_{R}^{m}(M,R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> using the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolutions of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The mapping cone of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is then a Tate resolution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, allowing us to compute the maximal Cohen-Macaulay approximation of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p> <p>In the case when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is 0-dimensional local, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the residue field, the formula for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> becomes a formula for the socle of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generalizing a well-known formula for the socle of a zero-dimensional complete intersection.</p> <p>When <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I subset-of upper J subset-of upper S\"> <mml:semantics> <mml:mrow> <mml:mi>I</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>J</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">I\\subset J\\subset S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are ideals generated by regular sequences, the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M equals upper S slash upper J\"> <mml:semantics> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>=</mml:mo> <mml:mi>S</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>J</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">M = S/J</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is called a <italic>quasi-complete intersection</italic>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> was studied in detail by Kustin and Şega. We relate their construction to the sequence of “Eagon-Northcott”-like complexes originally introduced by Buchsbaum and Eisenbud.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tate resolutions and MCM approximations\",\"authors\":\"D. Eisenbud, F. Schreyer\",\"doi\":\"10.1090/conm/773/15531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finitely generated Cohen-Macaulay module of codimension <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over a Gorenstein Ring <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R equals upper S slash upper I\\\"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>=</mml:mo> <mml:mi>S</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">R = S/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S\\\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a regular ring. We show how to form a quasi-isomorphism <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"phi\\\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from an <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolution of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to the dual of an <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolution of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M Superscript logical-or Baseline colon-equal normal upper E normal x normal t Subscript upper R Superscript m Baseline left-parenthesis upper M comma upper R right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>∨<!-- ∨ --></mml:mo> </mml:mrow> </mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-REL\\\"> <mml:mo>≔</mml:mo> </mml:mrow> <mml:msubsup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">E</mml:mi> <mml:mi mathvariant=\\\"normal\\\">x</mml:mi> <mml:mi mathvariant=\\\"normal\\\">t</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>m</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">M^{\\\\vee }\\\\colonequals {\\\\mathrm {Ext}}_{R}^{m}(M,R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> using the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S\\\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolutions of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The mapping cone of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"phi\\\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is then a Tate resolution of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, allowing us to compute the maximal Cohen-Macaulay approximation of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p> <p>In the case when <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is 0-dimensional local, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the residue field, the formula for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"phi\\\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> becomes a formula for the socle of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generalizing a well-known formula for the socle of a zero-dimensional complete intersection.</p> <p>When <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper I subset-of upper J subset-of upper S\\\"> <mml:semantics> <mml:mrow> <mml:mi>I</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>J</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">I\\\\subset J\\\\subset S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are ideals generated by regular sequences, the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M equals upper S slash upper J\\\"> <mml:semantics> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>=</mml:mo> <mml:mi>S</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>J</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">M = S/J</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is called a <italic>quasi-complete intersection</italic>, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"phi\\\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> was studied in detail by Kustin and Şega. We relate their construction to the sequence of “Eagon-Northcott”-like complexes originally introduced by Buchsbaum and Eisenbud.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/773/15531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/conm/773/15531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设M M为Gorenstein环R = S/I R = S/I上的余维M M的有限生成Cohen-Macaulay模,其中S S为正则环。讨论了从M的一个R / R自由分辨到M的一个R / R自由分辨的对偶的拟同构φ \ φ,对偶的对象是E x t R M (M,R) M^{\vee}\ colon= {\mathrm {Ext}}_{R}^{M}(M,R)使用rs自由分辨率的R R和M M。然后,φ \phi的映射锥是M M的一个Tate分辨率,允许我们计算M M的最大Cohen-Macaulay近似。在R R为0维局部的情况下,M M是剩余域,φ \phi的公式变成了R R的公式,推广了一个众所周知的零维完全相交的公式。当I∧J∧S I\子集J\子集S是正则序列生成的理想时,R R -模M = S/J M = S/J称为拟完全交集,其中φ \phi由Kustin和Şega进行了详细的研究。我们将它们的结构与最初由Buchsbaum和Eisenbud引入的“Eagon-Northcott”式复合体序列联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Tate resolutions and MCM approximations

Let M M be a finitely generated Cohen-Macaulay module of codimension m m over a Gorenstein Ring R = S / I R = S/I , where S S is a regular ring. We show how to form a quasi-isomorphism ϕ \phi from an R R -free resolution of M M to the dual of an R R -free resolution of M E x t R m ( M , R ) M^{\vee }\colonequals {\mathrm {Ext}}_{R}^{m}(M,R) using the S S -free resolutions of R R and M M . The mapping cone of ϕ \phi is then a Tate resolution of M M , allowing us to compute the maximal Cohen-Macaulay approximation of M M .

In the case when R R is 0-dimensional local, and M M is the residue field, the formula for ϕ \phi becomes a formula for the socle of R R generalizing a well-known formula for the socle of a zero-dimensional complete intersection.

When I J S I\subset J\subset S are ideals generated by regular sequences, the R R -module M = S / J M = S/J is called a quasi-complete intersection, and ϕ \phi was studied in detail by Kustin and Şega. We relate their construction to the sequence of “Eagon-Northcott”-like complexes originally introduced by Buchsbaum and Eisenbud.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信