Journal of Commutative Algebra最新文献

筛选
英文 中文
SYMBOLIC POWERS OF DERKSEN IDEALS 德克森理想的象征力量
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-04-09 DOI: 10.1216/jca.2023.15.275
Sandra Sandoval-G'omez
{"title":"SYMBOLIC POWERS OF DERKSEN IDEALS","authors":"Sandra Sandoval-G'omez","doi":"10.1216/jca.2023.15.275","DOIUrl":"https://doi.org/10.1216/jca.2023.15.275","url":null,"abstract":"Given that symbolic and ordinary powers of an ideal do not always coincide, we look for conditions on the ideal such that equality holds for every natural number. This paper focuses on studying the equality for Derksen ideals defined by finite groups acting linearly on a polynomial ring.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"48 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76281783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE SMALL FINITISTIC DIMENSIONS OF COMMUTATIVE RINGS 交换环的小有限维数
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-03-16 DOI: 10.1216/jca.2023.15.131
Xiaolei Zhang, Fanggui Wang
{"title":"THE SMALL FINITISTIC DIMENSIONS OF COMMUTATIVE RINGS","authors":"Xiaolei Zhang, Fanggui Wang","doi":"10.1216/jca.2023.15.131","DOIUrl":"https://doi.org/10.1216/jca.2023.15.131","url":null,"abstract":"Let $R$ be a commutative ring with identity. The small finitistic dimension $fPD(R)$ of $R$ is defined to be the supremum of projective dimensions of $R$-modules with finite projective resolutions. In this paper, we characterize a ring $R$ with $fPD(R)leq n$ using finitely generated semi-regular ideals, tilting modules, cotilting modules of cofinite type or vaguely associated prime ideals. As an application, we obtain that if $R$ is a Noetherian ring, then $fPD(R)= sup{grade(m,R)|min Max(R)}$ where $grade(m,R)$ is the grade of $m$ on $R$ . We also show that a ring $R$ satisfies $fPD(R)leq 1$ if and only if $R$ is a $DW$ ring. As applications, we show that the small finitistic dimensions of strong Prufer rings and $LPVD$s are at most one. Moreover, for any given $nin mathbb{N}$, we obtain examples of total rings of quotients $R$ with $fPD(R)=n$.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"14 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82894095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Discriminant amoebas and lopsidedness 区别性变形虫和不平衡
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-03-01 DOI: 10.1216/JCA.2021.13.41
Jens Forsgård
{"title":"Discriminant amoebas and lopsidedness","authors":"Jens Forsgård","doi":"10.1216/JCA.2021.13.41","DOIUrl":"https://doi.org/10.1216/JCA.2021.13.41","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"67 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85782531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Fat point ideals in $mathbb{K}[mathbb{P}^N]$ with linear minimal free resolutions and their resurgences 线性最小自由分辨率$mathbb{K}[mathbb{P}^N]$中的肥点理想及其重现
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-03-01 DOI: 10.1216/JCA.2021.13.61
Hassan Haghighi, M. Mosakhani
{"title":"Fat point ideals in $mathbb{K}[mathbb{P}^N]$ with linear minimal free resolutions and their resurgences","authors":"Hassan Haghighi, M. Mosakhani","doi":"10.1216/JCA.2021.13.61","DOIUrl":"https://doi.org/10.1216/JCA.2021.13.61","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"50 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85635594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root extension in polynomial and power series rings 多项式和幂级数环的根扩展
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-03-01 DOI: 10.1216/JCA.2021.13.129
Mi Hee Park
{"title":"Root extension in polynomial and power series rings","authors":"Mi Hee Park","doi":"10.1216/JCA.2021.13.129","DOIUrl":"https://doi.org/10.1216/JCA.2021.13.129","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"183 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74626724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Alexander–Hirschowitz Theorem and Related Problems Alexander-Hirschowitz定理及相关问题
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-24 DOI: 10.1007/978-3-030-89694-2_12
Huy Tài Hà, P. Mantero
{"title":"The Alexander–Hirschowitz Theorem and Related Problems","authors":"Huy Tài Hà, P. Mantero","doi":"10.1007/978-3-030-89694-2_12","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_12","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"79 3","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72584862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
AUSLANDER’S THEOREM AND N-ISOLATED SINGULARITIES 奥斯兰德定理和n个孤立奇点
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-20 DOI: 10.1216/jca.2023.15.115
Josh Stangle
{"title":"AUSLANDER’S THEOREM AND N-ISOLATED SINGULARITIES","authors":"Josh Stangle","doi":"10.1216/jca.2023.15.115","DOIUrl":"https://doi.org/10.1216/jca.2023.15.115","url":null,"abstract":"One of the most stunning results in the representation theory of Cohen-Macaulay rings is Auslander's well known theorem which states a CM local ring of finite CM type can have at most an isolated singularity. There have been some generalizations of this in the direction of countable CM type by Huneke and Leuschke. In this paper, we focus on a different generalization by restricting the class of modules. Here we consider modules which are high syzygies of MCM modules over non-commutative rings, exploiting the fact that non-commutative rings allow for finer homological behavior. We then generalize Auslander's Theorem in the setting of complete Gorenstein local domains by examining path algebras, which preserve finiteness of global dimension.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"15 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91010741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On finite molecularization domains 有限分子化域
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-07 DOI: 10.1216/JCA.2021.13.69
Andrew J. Hetzel, Anna L. Lawson, Andreas Reinhart
{"title":"On finite molecularization domains","authors":"Andrew J. Hetzel, Anna L. Lawson, Andreas Reinhart","doi":"10.1216/JCA.2021.13.69","DOIUrl":"https://doi.org/10.1216/JCA.2021.13.69","url":null,"abstract":"In this paper, we advance an ideal-theoretic analogue of a \"finite factorization domain\" (FFD), giving such a domain the moniker \"finite molecularization domain\" (FMD). We characterize FMD's as those factorable domains (termed \"molecular domains\" in the paper) for which every nonzero ideal is divisible by only finitely many nonfactorable ideals (termed \"molecules\" in the paper) and the monoid of nonzero ideals of the domain is unit-cancellative, in the language of Fan, Geroldinger, Kainrath, and Tringali. We develop a number of connections, particularly at the local level, amongst the concepts of \"FMD\", \"FFD\", and the \"finite superideal domains\" (FSD's) of Hetzel and Lawson. Characterizations of when $k[X^2, X^3]$, where $k$ is a field, and the classical $D+M$ construction are FMD's are provided. We also demonstrate that if $R$ is a Dedekind domain with the finite norm property, then $R[X]$ is an FMD.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87496426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Existence and Constructions of Totally Reflexive Modules 全自反模的存在与构造
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_25
Adela Vraciu
{"title":"Existence and Constructions of Totally Reflexive Modules","authors":"Adela Vraciu","doi":"10.1007/978-3-030-89694-2_25","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_25","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"70 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72801270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Which Properties of Stanley–Reisner Rings and Simplicial Complexes are Topological? Stanley-Reisner环和简单配合物的哪些性质是拓扑性质?
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-89694-2_27
V. Welker
{"title":"Which Properties of Stanley–Reisner Rings and Simplicial Complexes are Topological?","authors":"V. Welker","doi":"10.1007/978-3-030-89694-2_27","DOIUrl":"https://doi.org/10.1007/978-3-030-89694-2_27","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"73 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76466170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信