Journal of Commutative Algebra最新文献

筛选
英文 中文
Kähler Differentials for Fat Point Schemes in ℙ1×ℙ1 Kähler胖点格式在1× 1中的微分
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-06-01 DOI: 10.1216/jca.2021.13.179
E. Guardo, M. Kreuzer, Tran N. K. Linh, L. N. Long
{"title":"Kähler Differentials for Fat Point Schemes in ℙ1×ℙ1","authors":"E. Guardo, M. Kreuzer, Tran N. K. Linh, L. N. Long","doi":"10.1216/jca.2021.13.179","DOIUrl":"https://doi.org/10.1216/jca.2021.13.179","url":null,"abstract":"Let 𝕏 be a set of K-rational points in ℙ1×ℙ1 over a field K of characteristic zero, let 𝕐 be a fat point scheme supported at 𝕏, and let R𝕐 be the bihomogeneous coordinate ring of 𝕐. In this paper we investigate the module of Kahler differentials ΩR𝕐∕K1. We describe this bigraded R𝕐-module explicitly via a homogeneous short exact sequence and compute its Hilbert function in a number of special cases, in particular when the support 𝕏 is a complete intersection or an almost complete intersection in ℙ1×ℙ1. Moreover, we introduce a Kahler different for 𝕐 and use it to characterize ACM reduced schemes in ℙ1×ℙ1 having the Cayley–Bacharach property.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72580621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Local cohomology and the multigraded regularity of ℱℐm-modules _ (k) m-模的局部上同调与多重梯度正则性
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-06-01 DOI: 10.1216/jca.2021.13.235
Liping Li, Eric Ramos
{"title":"Local cohomology and the multigraded regularity of ℱℐm-modules","authors":"Liping Li, Eric Ramos","doi":"10.1216/jca.2021.13.235","DOIUrl":"https://doi.org/10.1216/jca.2021.13.235","url":null,"abstract":"We develop a local cohomology theory for ℱℐm-modules, and show that it in many ways mimics the classical theory for multigraded modules over a polynomial ring. In particular, we define an invariant of ℱℐm-modules using this local cohomology theory which closely resembles an invariant of multigraded modules over Cox rings defined by Maclagan and Smith. It is then shown that this invariant behaves almost identically to the invariant of Maclagan and Smith.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90516694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Boij–Söderberg decompositions of lexicographic ideals Boij-Söderberg字典理想的分解
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-06-01 DOI: 10.1216/jca.2021.13.209
Sema Güntürkün
{"title":"Boij–Söderberg decompositions of lexicographic ideals","authors":"Sema Güntürkün","doi":"10.1216/jca.2021.13.209","DOIUrl":"https://doi.org/10.1216/jca.2021.13.209","url":null,"abstract":"Boij–Soderberg theory describes the Betti diagrams of graded modules over a polynomial ring as a linear combination of pure diagrams with positive coefficients. In this paper, we focus on the Betti diagrams of lexicographic ideals. Mainly, we characterize the Boij–Soderberg decomposition of the Betti table of a lexicographic ideal in the polynomial ring with three variables, and show a nice connection between its Boij–Soderberg decomposition and the ones of other related lexicographic ideals.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90251826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Notes on endomorphisms, local cohomology and completion 关于自同态、局部上同调和补全的注解
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-05-03 DOI: 10.1090/conm/773/15540
P. Schenzel
{"title":"Notes on endomorphisms, local cohomology and completion","authors":"P. Schenzel","doi":"10.1090/conm/773/15540","DOIUrl":"https://doi.org/10.1090/conm/773/15540","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\u0000 <mml:semantics>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> denote a finitely generated module over a Noetherian ring <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\u0000 <mml:semantics>\u0000 <mml:mi>R</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. For an ideal <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I subset-of upper R\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>I</mml:mi>\u0000 <mml:mo>⊂<!-- ⊂ --></mml:mo>\u0000 <mml:mi>R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">I subset R</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> there is a study of the endomorphisms of the local cohomology module <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Subscript upper I Superscript g Baseline left-parenthesis upper M right-parenthesis comma g equals g r a d e left-parenthesis upper I comma upper M right-parenthesis comma\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msubsup>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mi>I</mml:mi>\u0000 <mml:mi>g</mml:mi>\u0000 </mml:msubsup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mi>a</mml:mi>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:mi>e</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>I</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>,</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">H^g_I(M), g = grade(I,M),</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and related results. Another subject is the study of left derived functors of the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\u0000 <mml:semantics>\u0000 <mml:mi>I</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-adic completion <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Lamda Subscript i Superscript upper I Baseline left-parenthesis upper H Subscript upper I Superscript g Baseline left-parenthesis upper M right-parenthesis right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msubsup>\u0000 <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\u0000 <mml:mi","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80948324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Unimodular rows over monoid extensions of overrings of polynomial rings 多项式环的上环的单调扩展上的单模行
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-04-19 DOI: 10.1216/jca.2022.14.583
M. A. Mathew, M. Keshari
{"title":"Unimodular rows over monoid extensions of overrings of polynomial rings","authors":"M. A. Mathew, M. Keshari","doi":"10.1216/jca.2022.14.583","DOIUrl":"https://doi.org/10.1216/jca.2022.14.583","url":null,"abstract":"Let $R$ be a commutative Noetherian ring of dimension $d$ and $M$ a commutative cancellative torsion-free seminormal monoid. Then (1) Let $A$ be a ring of type $R[d,m,n]$ and $P$ be a projective $A[M]$-module of rank $r geq max{2,d+1}$. Then the action of $E(A[M] oplus P)$ on $Um(A[M] oplus P)$ is transitive and (2) Assume $(R, m, K)$ is a regular local ring containing a field $k$ such that either $char$ $k=0$ or $ char$ $k = p$ and $tr$-$deg$ $K/mathbb{F}_p geq 1$. Let $A$ be a ring of type $R[d,m,n]^*$ and $fin R$ be a regular parameter. Then all finitely generated projective modules over $A[M],$ $A[M]_f$ and $A[M] otimes_R R(T)$ are free. When $M$ is free both results are due to Keshari and Lokhande.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83322544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
SYMBOLIC POWERS OF DERKSEN IDEALS 德克森理想的象征力量
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-04-09 DOI: 10.1216/jca.2023.15.275
Sandra Sandoval-G'omez
{"title":"SYMBOLIC POWERS OF DERKSEN IDEALS","authors":"Sandra Sandoval-G'omez","doi":"10.1216/jca.2023.15.275","DOIUrl":"https://doi.org/10.1216/jca.2023.15.275","url":null,"abstract":"Given that symbolic and ordinary powers of an ideal do not always coincide, we look for conditions on the ideal such that equality holds for every natural number. This paper focuses on studying the equality for Derksen ideals defined by finite groups acting linearly on a polynomial ring.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76281783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE SMALL FINITISTIC DIMENSIONS OF COMMUTATIVE RINGS 交换环的小有限维数
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-03-16 DOI: 10.1216/jca.2023.15.131
Xiaolei Zhang, Fanggui Wang
{"title":"THE SMALL FINITISTIC DIMENSIONS OF COMMUTATIVE RINGS","authors":"Xiaolei Zhang, Fanggui Wang","doi":"10.1216/jca.2023.15.131","DOIUrl":"https://doi.org/10.1216/jca.2023.15.131","url":null,"abstract":"Let $R$ be a commutative ring with identity. The small finitistic dimension $fPD(R)$ of $R$ is defined to be the supremum of projective dimensions of $R$-modules with finite projective resolutions. In this paper, we characterize a ring $R$ with $fPD(R)leq n$ using finitely generated semi-regular ideals, tilting modules, cotilting modules of cofinite type or vaguely associated prime ideals. As an application, we obtain that if $R$ is a Noetherian ring, then $fPD(R)= sup{grade(m,R)|min Max(R)}$ where $grade(m,R)$ is the grade of $m$ on $R$ . We also show that a ring $R$ satisfies $fPD(R)leq 1$ if and only if $R$ is a $DW$ ring. As applications, we show that the small finitistic dimensions of strong Prufer rings and $LPVD$s are at most one. Moreover, for any given $nin mathbb{N}$, we obtain examples of total rings of quotients $R$ with $fPD(R)=n$.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82894095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Discriminant amoebas and lopsidedness 区别性变形虫和不平衡
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-03-01 DOI: 10.1216/JCA.2021.13.41
Jens Forsgård
{"title":"Discriminant amoebas and lopsidedness","authors":"Jens Forsgård","doi":"10.1216/JCA.2021.13.41","DOIUrl":"https://doi.org/10.1216/JCA.2021.13.41","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85782531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Fat point ideals in $mathbb{K}[mathbb{P}^N]$ with linear minimal free resolutions and their resurgences 线性最小自由分辨率$mathbb{K}[mathbb{P}^N]$中的肥点理想及其重现
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-03-01 DOI: 10.1216/JCA.2021.13.61
Hassan Haghighi, M. Mosakhani
{"title":"Fat point ideals in $mathbb{K}[mathbb{P}^N]$ with linear minimal free resolutions and their resurgences","authors":"Hassan Haghighi, M. Mosakhani","doi":"10.1216/JCA.2021.13.61","DOIUrl":"https://doi.org/10.1216/JCA.2021.13.61","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85635594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root extension in polynomial and power series rings 多项式和幂级数环的根扩展
IF 0.6 4区 数学
Journal of Commutative Algebra Pub Date : 2021-03-01 DOI: 10.1216/JCA.2021.13.129
Mi Hee Park
{"title":"Root extension in polynomial and power series rings","authors":"Mi Hee Park","doi":"10.1216/JCA.2021.13.129","DOIUrl":"https://doi.org/10.1216/JCA.2021.13.129","url":null,"abstract":"","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74626724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信