On finite molecularization domains

Pub Date : 2021-01-07 DOI:10.1216/JCA.2021.13.69
Andrew J. Hetzel, Anna L. Lawson, Andreas Reinhart
{"title":"On finite molecularization domains","authors":"Andrew J. Hetzel, Anna L. Lawson, Andreas Reinhart","doi":"10.1216/JCA.2021.13.69","DOIUrl":null,"url":null,"abstract":"In this paper, we advance an ideal-theoretic analogue of a \"finite factorization domain\" (FFD), giving such a domain the moniker \"finite molecularization domain\" (FMD). We characterize FMD's as those factorable domains (termed \"molecular domains\" in the paper) for which every nonzero ideal is divisible by only finitely many nonfactorable ideals (termed \"molecules\" in the paper) and the monoid of nonzero ideals of the domain is unit-cancellative, in the language of Fan, Geroldinger, Kainrath, and Tringali. We develop a number of connections, particularly at the local level, amongst the concepts of \"FMD\", \"FFD\", and the \"finite superideal domains\" (FSD's) of Hetzel and Lawson. Characterizations of when $k[X^2, X^3]$, where $k$ is a field, and the classical $D+M$ construction are FMD's are provided. We also demonstrate that if $R$ is a Dedekind domain with the finite norm property, then $R[X]$ is an FMD.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/JCA.2021.13.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we advance an ideal-theoretic analogue of a "finite factorization domain" (FFD), giving such a domain the moniker "finite molecularization domain" (FMD). We characterize FMD's as those factorable domains (termed "molecular domains" in the paper) for which every nonzero ideal is divisible by only finitely many nonfactorable ideals (termed "molecules" in the paper) and the monoid of nonzero ideals of the domain is unit-cancellative, in the language of Fan, Geroldinger, Kainrath, and Tringali. We develop a number of connections, particularly at the local level, amongst the concepts of "FMD", "FFD", and the "finite superideal domains" (FSD's) of Hetzel and Lawson. Characterizations of when $k[X^2, X^3]$, where $k$ is a field, and the classical $D+M$ construction are FMD's are provided. We also demonstrate that if $R$ is a Dedekind domain with the finite norm property, then $R[X]$ is an FMD.
分享
查看原文
有限分子化域
在本文中,我们提出了“有限因子分解域”(FFD)的一个理想理论类比,并将其命名为“有限分子化域”(FMD)。我们将FMD描述为那些可分解域(在文中称为“分子域”),其中每个非零理想只能被有限个不可分解理想(在文中称为“分子”)整除,并且该域的非零理想的幺一元在Fan, Geroldinger, Kainrath和Tringali的语言中是单位消去的。我们在Hetzel和Lawson的“FMD”、“FFD”和“有限超域”(FSD’s)概念之间建立了许多联系,特别是在局部层面。给出了当$k[X^2, X^3]$,其中$k$是一个域,以及经典的$D+M$结构为FMD时的特征。我们还证明了如果$R$是具有有限范数性质的Dedekind定义域,则$R[X]$是FMD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信