交换环的小有限维数

Pub Date : 2021-03-16 DOI:10.1216/jca.2023.15.131
Xiaolei Zhang, Fanggui Wang
{"title":"交换环的小有限维数","authors":"Xiaolei Zhang, Fanggui Wang","doi":"10.1216/jca.2023.15.131","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring with identity. The small finitistic dimension $\\fPD(R)$ of $R$ is defined to be the supremum of projective dimensions of $R$-modules with finite projective resolutions. In this paper, we characterize a ring $R$ with $\\fPD(R)\\leq n$ using finitely generated semi-regular ideals, tilting modules, cotilting modules of cofinite type or vaguely associated prime ideals. As an application, we obtain that if $R$ is a Noetherian ring, then $\\fPD(R)= \\sup\\{\\grade(\\m,R)|\\m\\in \\Max(R)\\}$ where $\\grade(\\m,R)$ is the grade of $\\m$ on $R$ . We also show that a ring $R$ satisfies $\\fPD(R)\\leq 1$ if and only if $R$ is a $\\DW$ ring. As applications, we show that the small finitistic dimensions of strong \\Prufer\\ rings and $\\LPVD$s are at most one. Moreover, for any given $n\\in \\mathbb{N}$, we obtain examples of total rings of quotients $R$ with $\\fPD(R)=n$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"THE SMALL FINITISTIC DIMENSIONS OF COMMUTATIVE RINGS\",\"authors\":\"Xiaolei Zhang, Fanggui Wang\",\"doi\":\"10.1216/jca.2023.15.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative ring with identity. The small finitistic dimension $\\\\fPD(R)$ of $R$ is defined to be the supremum of projective dimensions of $R$-modules with finite projective resolutions. In this paper, we characterize a ring $R$ with $\\\\fPD(R)\\\\leq n$ using finitely generated semi-regular ideals, tilting modules, cotilting modules of cofinite type or vaguely associated prime ideals. As an application, we obtain that if $R$ is a Noetherian ring, then $\\\\fPD(R)= \\\\sup\\\\{\\\\grade(\\\\m,R)|\\\\m\\\\in \\\\Max(R)\\\\}$ where $\\\\grade(\\\\m,R)$ is the grade of $\\\\m$ on $R$ . We also show that a ring $R$ satisfies $\\\\fPD(R)\\\\leq 1$ if and only if $R$ is a $\\\\DW$ ring. As applications, we show that the small finitistic dimensions of strong \\\\Prufer\\\\ rings and $\\\\LPVD$s are at most one. Moreover, for any given $n\\\\in \\\\mathbb{N}$, we obtain examples of total rings of quotients $R$ with $\\\\fPD(R)=n$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2023.15.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2023.15.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

设$R$是一个具有恒等的交换环。定义了$R$的有限小维$\fPD(R)$为具有有限射影分辨率的$R$ -模块的射影维的最大值。本文利用有限生成的半正则理想、倾模、有限型的倾模或模糊关联的素理想,用$\fPD(R)\leq n$刻画了一个环$R$。作为应用,我们得到,如果$R$是一个诺瑟环,则$\fPD(R)= \sup\{\grade(\m,R)|\m\in \Max(R)\}$,其中$\grade(\m,R)$是$\m$在$R$上的等级。我们还证明了一个环$R$满足$\fPD(R)\leq 1$当且仅当$R$是一个$\DW$环。作为应用,我们证明了强\Prufer环和$\LPVD$环的小有限维不超过1。此外,对于任意给定$n\in \mathbb{N}$,我们得到了含有$\fPD(R)=n$的商的全环$R$的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
THE SMALL FINITISTIC DIMENSIONS OF COMMUTATIVE RINGS
Let $R$ be a commutative ring with identity. The small finitistic dimension $\fPD(R)$ of $R$ is defined to be the supremum of projective dimensions of $R$-modules with finite projective resolutions. In this paper, we characterize a ring $R$ with $\fPD(R)\leq n$ using finitely generated semi-regular ideals, tilting modules, cotilting modules of cofinite type or vaguely associated prime ideals. As an application, we obtain that if $R$ is a Noetherian ring, then $\fPD(R)= \sup\{\grade(\m,R)|\m\in \Max(R)\}$ where $\grade(\m,R)$ is the grade of $\m$ on $R$ . We also show that a ring $R$ satisfies $\fPD(R)\leq 1$ if and only if $R$ is a $\DW$ ring. As applications, we show that the small finitistic dimensions of strong \Prufer\ rings and $\LPVD$s are at most one. Moreover, for any given $n\in \mathbb{N}$, we obtain examples of total rings of quotients $R$ with $\fPD(R)=n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信