{"title":"Tate resolutions and MCM approximations","authors":"D. Eisenbud, F. Schreyer","doi":"10.1090/conm/773/15531","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finitely generated Cohen-Macaulay module of codimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over a Gorenstein Ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R equals upper S slash upper I\"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>=</mml:mo> <mml:mi>S</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">R = S/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a regular ring. We show how to form a quasi-isomorphism <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to the dual of an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M Superscript logical-or Baseline colon-equal normal upper E normal x normal t Subscript upper R Superscript m Baseline left-parenthesis upper M comma upper R right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>∨<!-- ∨ --></mml:mo> </mml:mrow> </mml:msup> <mml:mrow class=\"MJX-TeXAtom-REL\"> <mml:mo>≔</mml:mo> </mml:mrow> <mml:msubsup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">E</mml:mi> <mml:mi mathvariant=\"normal\">x</mml:mi> <mml:mi mathvariant=\"normal\">t</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">M^{\\vee }\\colonequals {\\mathrm {Ext}}_{R}^{m}(M,R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> using the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolutions of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The mapping cone of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is then a Tate resolution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, allowing us to compute the maximal Cohen-Macaulay approximation of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p> <p>In the case when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is 0-dimensional local, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the residue field, the formula for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> becomes a formula for the socle of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generalizing a well-known formula for the socle of a zero-dimensional complete intersection.</p> <p>When <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I subset-of upper J subset-of upper S\"> <mml:semantics> <mml:mrow> <mml:mi>I</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>J</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">I\\subset J\\subset S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are ideals generated by regular sequences, the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M equals upper S slash upper J\"> <mml:semantics> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>=</mml:mo> <mml:mi>S</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>J</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">M = S/J</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is called a <italic>quasi-complete intersection</italic>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> was studied in detail by Kustin and Şega. We relate their construction to the sequence of “Eagon-Northcott”-like complexes originally introduced by Buchsbaum and Eisenbud.</p>","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"37 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/conm/773/15531","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Let MM be a finitely generated Cohen-Macaulay module of codimension mm over a Gorenstein Ring R=S/IR = S/I, where SS is a regular ring. We show how to form a quasi-isomorphism ϕ\phi from an RR-free resolution of MM to the dual of an RR-free resolution of M∨≔ExtRm(M,R)M^{\vee }\colonequals {\mathrm {Ext}}_{R}^{m}(M,R) using the SS-free resolutions of RR and MM. The mapping cone of ϕ\phi is then a Tate resolution of MM, allowing us to compute the maximal Cohen-Macaulay approximation of MM.
In the case when RR is 0-dimensional local, and MM is the residue field, the formula for ϕ\phi becomes a formula for the socle of RR generalizing a well-known formula for the socle of a zero-dimensional complete intersection.
When I⊂J⊂SI\subset J\subset S are ideals generated by regular sequences, the RR-module M=S/JM = S/J is called a quasi-complete intersection, and ϕ\phi was studied in detail by Kustin and Şega. We relate their construction to the sequence of “Eagon-Northcott”-like complexes originally introduced by Buchsbaum and Eisenbud.
期刊介绍:
Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids.
The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.