Tate resolutions and MCM approximations

IF 0.3 4区 数学 Q4 MATHEMATICS
D. Eisenbud, F. Schreyer
{"title":"Tate resolutions and MCM approximations","authors":"D. Eisenbud, F. Schreyer","doi":"10.1090/conm/773/15531","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finitely generated Cohen-Macaulay module of codimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over a Gorenstein Ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R equals upper S slash upper I\"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>=</mml:mo> <mml:mi>S</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">R = S/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a regular ring. We show how to form a quasi-isomorphism <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to the dual of an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M Superscript logical-or Baseline colon-equal normal upper E normal x normal t Subscript upper R Superscript m Baseline left-parenthesis upper M comma upper R right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>∨<!-- ∨ --></mml:mo> </mml:mrow> </mml:msup> <mml:mrow class=\"MJX-TeXAtom-REL\"> <mml:mo>≔</mml:mo> </mml:mrow> <mml:msubsup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">E</mml:mi> <mml:mi mathvariant=\"normal\">x</mml:mi> <mml:mi mathvariant=\"normal\">t</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">M^{\\vee }\\colonequals {\\mathrm {Ext}}_{R}^{m}(M,R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> using the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free resolutions of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The mapping cone of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is then a Tate resolution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, allowing us to compute the maximal Cohen-Macaulay approximation of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p> <p>In the case when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is 0-dimensional local, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the residue field, the formula for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> becomes a formula for the socle of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generalizing a well-known formula for the socle of a zero-dimensional complete intersection.</p> <p>When <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I subset-of upper J subset-of upper S\"> <mml:semantics> <mml:mrow> <mml:mi>I</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>J</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">I\\subset J\\subset S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are ideals generated by regular sequences, the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M equals upper S slash upper J\"> <mml:semantics> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>=</mml:mo> <mml:mi>S</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>J</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">M = S/J</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is called a <italic>quasi-complete intersection</italic>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> was studied in detail by Kustin and Şega. We relate their construction to the sequence of “Eagon-Northcott”-like complexes originally introduced by Buchsbaum and Eisenbud.</p>","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"37 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/conm/773/15531","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let M M be a finitely generated Cohen-Macaulay module of codimension m m over a Gorenstein Ring R = S / I R = S/I , where S S is a regular ring. We show how to form a quasi-isomorphism ϕ \phi from an R R -free resolution of M M to the dual of an R R -free resolution of M E x t R m ( M , R ) M^{\vee }\colonequals {\mathrm {Ext}}_{R}^{m}(M,R) using the S S -free resolutions of R R and M M . The mapping cone of ϕ \phi is then a Tate resolution of M M , allowing us to compute the maximal Cohen-Macaulay approximation of M M .

In the case when R R is 0-dimensional local, and M M is the residue field, the formula for ϕ \phi becomes a formula for the socle of R R generalizing a well-known formula for the socle of a zero-dimensional complete intersection.

When I J S I\subset J\subset S are ideals generated by regular sequences, the R R -module M = S / J M = S/J is called a quasi-complete intersection, and ϕ \phi was studied in detail by Kustin and Şega. We relate their construction to the sequence of “Eagon-Northcott”-like complexes originally introduced by Buchsbaum and Eisenbud.

Tate分辨率和MCM近似
设M M为Gorenstein环R = S/I R = S/I上的余维M M的有限生成Cohen-Macaulay模,其中S S为正则环。讨论了从M的一个R / R自由分辨到M的一个R / R自由分辨的对偶的拟同构φ \ φ,对偶的对象是E x t R M (M,R) M^{\vee}\ colon= {\mathrm {Ext}}_{R}^{M}(M,R)使用rs自由分辨率的R R和M M。然后,φ \phi的映射锥是M M的一个Tate分辨率,允许我们计算M M的最大Cohen-Macaulay近似。在R R为0维局部的情况下,M M是剩余域,φ \phi的公式变成了R R的公式,推广了一个众所周知的零维完全相交的公式。当I∧J∧S I\子集J\子集S是正则序列生成的理想时,R R -模M = S/J M = S/J称为拟完全交集,其中φ \phi由Kustin和Şega进行了详细的研究。我们将它们的结构与最初由Buchsbaum和Eisenbud引入的“Eagon-Northcott”式复合体序列联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
16.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids. The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信