{"title":"完全局部环中的Étale轨迹","authors":"R. Heitmann","doi":"10.1090/conm/773/15532","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a complete local ring and let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime ideal of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is determined precisely which conditions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are equivalent to the existence of a complete unramified regular local ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and an element <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g element-of upper A minus upper Q\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>A</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g\\in A-Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript g Baseline long right-arrow upper R Subscript g\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">⟶<!-- ⟶ --></mml:mo> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>g</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A_g\\longrightarrow R_g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is étale . A number of other properties of the possible embeddings <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A long right-arrow upper R\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">⟶<!-- ⟶ --></mml:mo> <mml:mi>R</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A\\longrightarrow R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are developed in the process including the determination of precisely which fields can be coefficient fields in the Cohen-Gabber Theorem.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Étale locus in complete local rings\",\"authors\":\"R. Heitmann\",\"doi\":\"10.1090/conm/773/15532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a complete local ring and let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q\\\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime ideal of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is determined precisely which conditions on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are equivalent to the existence of a complete unramified regular local ring <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and an element <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g element-of upper A minus upper Q\\\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>A</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">g\\\\in A-Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript g Baseline long right-arrow upper R Subscript g\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">⟶<!-- ⟶ --></mml:mo> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>g</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">A_g\\\\longrightarrow R_g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is étale . A number of other properties of the possible embeddings <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A long right-arrow upper R\\\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy=\\\"false\\\">⟶<!-- ⟶ --></mml:mo> <mml:mi>R</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">A\\\\longrightarrow R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are developed in the process including the determination of precisely which fields can be coefficient fields in the Cohen-Gabber Theorem.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/773/15532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/conm/773/15532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
设R R是一个完全局部环,Q Q是R R的素理想。精确地确定了在R R上哪些条件等价于存在一个完全的非发散正则局部环a a和a -Q中的一个元素g∈a−Q g\,使得R R是一个有限的a a -模,并且a g R R_g。在此过程中发展了可能嵌入A × R的许多其他性质,包括确定Cohen-Gabber定理中哪些场可以是系数场。
Let RR be a complete local ring and let QQ be a prime ideal of RR. It is determined precisely which conditions on RR are equivalent to the existence of a complete unramified regular local ring AA and an element g∈A−Qg\in A-Q such that RR is a finite AA-module and Ag⟶RgA_g\longrightarrow R_g is étale . A number of other properties of the possible embeddings A⟶RA\longrightarrow R are developed in the process including the determination of precisely which fields can be coefficient fields in the Cohen-Gabber Theorem.