Crystal Research and Technology最新文献

筛选
英文 中文
Masthead: Crystal Research and Technology 8'2024 刊头:水晶研究与技术 8'2024
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-08-03 DOI: 10.1002/crat.202470040
{"title":"Masthead: Crystal Research and Technology 8'2024","authors":"","doi":"10.1002/crat.202470040","DOIUrl":"10.1002/crat.202470040","url":null,"abstract":"","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202470040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Growth Mechanism of Layered Hexagonal Boron Nitride Crystal on Copper Foil 层状六方氮化硼晶体在铜箔上的生长机理
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-07-29 DOI: 10.1002/crat.202400013
Xia Lei, Guangcun Gao, Jieqiong Wang
{"title":"The Growth Mechanism of Layered Hexagonal Boron Nitride Crystal on Copper Foil","authors":"Xia Lei,&nbsp;Guangcun Gao,&nbsp;Jieqiong Wang","doi":"10.1002/crat.202400013","DOIUrl":"10.1002/crat.202400013","url":null,"abstract":"<p>2D hexagonal boron nitride (h-BN), which has a similar honeycomb lattice structure to graphene, is a promising dielectric material for a wide variety of applications. Herein, the growth of high-quality and large-size multilayer h-BN crystals on Cu foils is reported by chemical vapor deposition (CVD) at atmospheric pressure. The size of an individual isolated hexagonal crystal of h-BN is about 20 µm, and the thickness is 3 nm. This paper studies the variables that affect h-BN growth during the process and the microstructure changes during the growth. Through analysis of the thermal and dynamic processes of chemical vapor deposition, relationships are derived between the mass of h-BN grown in the gas phase and various temperature and pressure factors. This information is used to develop appropriate parameters for commercial copper foil growth. Finally, using optimized conditions, high-quality h-BN at high pressure and low gas flow conditions are grown.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustic Shock-Induced Low Dielectric Loss in Glycine and Oxalic Acid-Based Single Crystals 声震诱导甘氨酸和草酸基单晶的低介电损耗
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-07-19 DOI: 10.1002/crat.202400090
Deepa Muniraj, Raju Suresh Kumar, Abdulrahman I. Almansour, Ikhyun Kim, S. A. Martin Britto Dhas
{"title":"Acoustic Shock-Induced Low Dielectric Loss in Glycine and Oxalic Acid-Based Single Crystals","authors":"Deepa Muniraj,&nbsp;Raju Suresh Kumar,&nbsp;Abdulrahman I. Almansour,&nbsp;Ikhyun Kim,&nbsp;S. A. Martin Britto Dhas","doi":"10.1002/crat.202400090","DOIUrl":"10.1002/crat.202400090","url":null,"abstract":"<p>Glycinium oxalate (GO) and Bis(glycinium) oxalate (BGO) crystals are successfully grown using the slow evaporation solution growth technique. Following their growth, the crystals are subjected to a series of acoustic shock pulses. The effects of these shock pulses on the structural, optical, dielectric, and morphological properties of the crystals are comprehensively analyzed using various characterization techniques, including powder X-ray diffraction (XRD), UV-Visible spectroscopy, dielectric spectroscopy, and optical microscopy. Structural analysis through XRD reveals shifts in diffraction peak positions, indicating structural deformations. Fourier transform infrared spectroscopy analysis assesses the chemical stability of GO and BGO under shocked conditions. UV-Visible spectroscopy shows alterations in optical transmission with successive shock pulses, attributed to structural and surface defects. Dielectric properties are investigated over a frequency range from 1 Hz to 1 MHz, revealing variations in dielectric constant and loss tangent, which provide insights into the electrical behavior of the materials under normal and shocked conditions. Optical and scanning electron microscopy examine surface morphology, visualizing defects induced by the shock pulses. This study highlights the significant impact of shock pulses on the structural properties, optical transmission, dielectric properties, and surface morphology of GO and BGO crystals, offering valuable information on their resilience under dynamic conditions and potential applications.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NH4Y(SO4)2·H2O and NH4YSO4F2: Two New Ammonium-Rare Earth Metal Sulfates with Enhanced Optical Anisotropy and Deep Ultraviolet Transmission NH4Y(SO4)2-H2O 和 NH4YSO4F2: 两种具有增强光学各向异性和深紫外透射率的新型铵稀土金属硫酸盐
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-07-19 DOI: 10.1002/crat.202400072
Luyong Zhang, Shibin Wang, Zhencheng Wu, Xueling Hou, Zhihua Yang, Fangfang Zhang, Shilie Pan
{"title":"NH4Y(SO4)2·H2O and NH4YSO4F2: Two New Ammonium-Rare Earth Metal Sulfates with Enhanced Optical Anisotropy and Deep Ultraviolet Transmission","authors":"Luyong Zhang,&nbsp;Shibin Wang,&nbsp;Zhencheng Wu,&nbsp;Xueling Hou,&nbsp;Zhihua Yang,&nbsp;Fangfang Zhang,&nbsp;Shilie Pan","doi":"10.1002/crat.202400072","DOIUrl":"10.1002/crat.202400072","url":null,"abstract":"<p>Tetrahedral oxygenated groups with large highest occupied molecular orbital-lowest unoccupied molecular orbital (H gaps such as [SO<sub>4</sub>] are beneficial for deep ultraviolet (DUV) transmission but usually make against generating sufficient birefringence due to the small polarizability anisotropy. Thus, it is extremely difficult to obtain DUV transmission and large birefringence simultaneously in the search for DUV birefringent materials in sulfates. Herein, two new ammonium-rare earth metal sulfates, NH<sub>4</sub>Y(SO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O and NH<sub>4</sub>YSO<sub>4</sub>F<sub>2</sub>, with DUV transmission are presented. Meanwhile, both exhibit greatly elevated birefringence through the involvement of NH<sub>4</sub><sup>+</sup> units, compared to Y<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·8H<sub>2</sub>O. Their optical properties are further investigated by theoretical calculations, and the effect of the introduction of NH<sub>4</sub><sup>+</sup> into yttrium sulfate on optimizing the structures and properties is discussed. This work may provide a new perspective for further exploration of DUV birefringent materials in tetrahedral oxygenated group sulfates.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Seed-Induced Nucleation for Enhanced Al(OH)3 Crystal Precipitation from Supersaturated Potassium Aluminate Solution 优化种子诱导成核,从过饱和铝酸钾溶液中沉淀出更多 Al(OH)3 晶体
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-07-16 DOI: 10.1002/crat.202400086
Chenglin Liu, Jin Xue, Xiaoning Fang, Mengjie Luo
{"title":"Optimizing Seed-Induced Nucleation for Enhanced Al(OH)3 Crystal Precipitation from Supersaturated Potassium Aluminate Solution","authors":"Chenglin Liu,&nbsp;Jin Xue,&nbsp;Xiaoning Fang,&nbsp;Mengjie Luo","doi":"10.1002/crat.202400086","DOIUrl":"10.1002/crat.202400086","url":null,"abstract":"<p>Potassium alunite is a potential mineral resource of potassium and aluminum that can serve as a valuable resource. An effective potassium and aluminum recovery method is developed using gradient leaching with a KOH sub-molten salt. The key part of this process is seeded precipitation of the potassium aluminate leach solution. Therefore, this study aims to optimize the seeded precipitation process by investigating the effects of alkali concentration, molecular ratio, stirring rate, temperature, and seed coefficient on the precipitation ratio and particle size of Al(OH)<sub>3</sub>. The results show that alkali concentration, molecular ratio, temperature, and seed coefficient are key factors influencing seeded precipitation. Furthermore, the process is optimized by using these four identified factors as variables. A 9L(34) orthogonal experiment determines optimal conditions for maximizing the precipitation ratio and achieves the desired average particle size. Under the optimal condition of 200 g L<sup>−1</sup> alkali concentration, 1.5 molecular ratio, 1.0 seed coefficient, and 343.15 K temperature, the precipitation ratio reaches 54% and the average Al(OH)<sub>3</sub> particle size is 114 µm. Further work is required to scale up this optimized seeded precipitation process and evaluate applications of the Al(OH)<sub>3</sub> product.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141643191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth and Optical Properties of Yellow Luminescent [Epy]2[CuBr3] Single Crystals Based on Self Trapping States 基于自捕获态的黄色发光 [Epy]2[CuBr3]单晶的生长和光学特性
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-07-10 DOI: 10.1002/crat.202400012
Xinxin Chen, Shujun Zhu, Jiali Han, Tao Zhao, Jianguo Pan, Shangke Pan
{"title":"Growth and Optical Properties of Yellow Luminescent [Epy]2[CuBr3] Single Crystals Based on Self Trapping States","authors":"Xinxin Chen,&nbsp;Shujun Zhu,&nbsp;Jiali Han,&nbsp;Tao Zhao,&nbsp;Jianguo Pan,&nbsp;Shangke Pan","doi":"10.1002/crat.202400012","DOIUrl":"10.1002/crat.202400012","url":null,"abstract":"<p>The low-dimensional organic-inorganic lead halide compound has garnered significant attention in recent times due to its exceptional optoelectronic properties. However, its application in the field of optoelectronics has been hindered by the toxicity of lead. Here, a novel inorganic-organic compound [Epy]<sub>2</sub>[CuBr<sub>3</sub>] single crystal material with a 0D structure based on Cu(I) is introduced. The single crystal exhibits a broad band yellow luminescence, a significant Stokes shift, and a microsecond-scale photoluminescence (PL) lifetime, which is mainly attributed to the self-trapped excitons (STEs) excitation. In addition, the relevant PL spectra are measured at 78–348 K. The photoluminescence intensity decreases with increasing temperature due to strong electro-phonon coupling. The exciton binding energy E<sub>b</sub> of the crystal is 76.43 meV, and the Huang-Rhys factor S is 40.55. It is worth noting that the crystal also shows a good response to X-rays. Overall, [Epy]<sub>2</sub>[CuBr<sub>3</sub>] displays its good potential.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Crystal Research and Technology 7'2024 刊头:水晶研究与技术 7'2024
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-07-07 DOI: 10.1002/crat.202470038
{"title":"Masthead: Crystal Research and Technology 7'2024","authors":"","doi":"10.1002/crat.202470038","DOIUrl":"https://doi.org/10.1002/crat.202470038","url":null,"abstract":"","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202470038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(Crystal Research and Technology 7/2024) (水晶研究与技术 7/2024)
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-07-07 DOI: 10.1002/crat.202470037
{"title":"(Crystal Research and Technology 7/2024)","authors":"","doi":"10.1002/crat.202470037","DOIUrl":"https://doi.org/10.1002/crat.202470037","url":null,"abstract":"<p>Cover image provided courtesy of Jianguang Zhou, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, China.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202470037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oiling-Out in Industrial Crystallization of Organic Small Molecules: Mechanisms, Characterization, Regulation, and Applications 有机小分子工业结晶中的脱油现象:机理、表征、调节和应用
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-07-07 DOI: 10.1002/crat.202400092
Shilei Zhou, Zhenkai Cen, Dandan Han, Bowen Zhang, Junbo Gong
{"title":"Oiling-Out in Industrial Crystallization of Organic Small Molecules: Mechanisms, Characterization, Regulation, and Applications","authors":"Shilei Zhou,&nbsp;Zhenkai Cen,&nbsp;Dandan Han,&nbsp;Bowen Zhang,&nbsp;Junbo Gong","doi":"10.1002/crat.202400092","DOIUrl":"10.1002/crat.202400092","url":null,"abstract":"<p>Oiling-out is a common phenomenon in industrial crystallization processes that not only prolongs the total operating time but also leads to undesirable crystal morphology, making it challenging to control crystallization paths. This review provides a comprehensive overview of the oiling-out phenomenon in organic small molecule crystallization. First, the formation mechanisms of oiling-out are summarized from both thermodynamic and dynamic perspectives, providing the theoretical foundation for understanding the phenomenon. Then, the universal characterization methods for studying the oiling-out phenomenon of organic small molecules are introduced in detail, covering both offline and online analytical tools. Moreover, the regulation strategy for oiling-out, including solvents, impurities, seeding, temperature, and mixing methods are discussed. This paper also focuses on the application of oiling-out in co-assembly and crystal shape modulation. Finally, future opportunities and challenges are presented to address the current shortcomings and application bottlenecks in the study of organic small molecule oiling-out phenomena. This review aims to provide valuable insights and guidance for researchers working on the crystallization of organic small molecules, particularly in the pharmaceutical industry, to better understand, control, and utilize the oiling-out phenomenon.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium Carbonate Nanocrystal Growth and Formation on Substrate by Thermal Chemical Vapor Deposition at Different Pre-Cursor Concentration 不同前驱体浓度下热化学气相沉积法在基底上生长和形成碳酸钙纳米晶
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-07-05 DOI: 10.1002/crat.202400051
Nurul Hidah Sulimai, Salifairus Mohammad Jafar, Zuraida Khusaimi, Mohd. Firdaus Malek, Saifollah Abdullah, Mohamad Rusop Mahmood
{"title":"Calcium Carbonate Nanocrystal Growth and Formation on Substrate by Thermal Chemical Vapor Deposition at Different Pre-Cursor Concentration","authors":"Nurul Hidah Sulimai,&nbsp;Salifairus Mohammad Jafar,&nbsp;Zuraida Khusaimi,&nbsp;Mohd. Firdaus Malek,&nbsp;Saifollah Abdullah,&nbsp;Mohamad Rusop Mahmood","doi":"10.1002/crat.202400051","DOIUrl":"10.1002/crat.202400051","url":null,"abstract":"<p>Recent observations of crystallization by thermal chemical vapor deposition systems indicate that the classical mechanism of nucleation and growth is followed. Information on aragonite nanocrystal growth and formation on substrate have been lacking due to the lack of reports on diffusional growth that can observe calcium carbonate nucleation processes in thin film formation. This report is important due to the additive-free method able to grow stable single-phase nanocrystals without the presence of other phases, amorphous or impurities. This work demonstrates homogeneous nucleation occurred in gas phase reaction in a constant flow of carbon dioxide gas (100 sccm) with optimally 0.5 <span>M</span> calcium chloride precursor in atmospheric pressure at 400 °C resulting in a calculated crystallite size of 27.8 nm. X-ray diffraction and energy dispersive spectrometer confirm the presence of calcium carbonate nanocrystal, whereas its structural changes are observed by its micrograph from field emission scanning electron microscope. The aim is to convey its importance in gaining control of aragonite nanocrystal morphology and structural properties, and thus generate nanocrystals with controlled phase. This work may contribute to development of more sensitive and crucial applications of calcium carbonate nanocrystal thin film such as in biosensors and biomedical.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信